User:Polygon/Better lower bound for BB(4,3): Difference between revisions
Jump to navigation
Jump to search
(Created page for a slightly bigger lower bound for BB(4,3)) |
(Fixed weird headings) |
||
Line 10: | Line 10: | ||
Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7</math> | Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7</math> | ||
==Lower bound on | ==Lower bound on f^n(0)== | ||
<math>f(n) = 2^{2^{n+1}}</math> | <math>f(n) = 2^{2^{n+1}}</math> | ||
Line 20: | Line 20: | ||
<math>=> f^{n}(0) > 2 \uparrow\uparrow 2n</math> | <math>=> f^{n}(0) > 2 \uparrow\uparrow 2n</math> | ||
==Lower bound on | ==Lower bound on g^k(n)== | ||
<math>g(n) = \frac {5 \times 2^{2^{f^{n}(0)+1}+2}-8}{9} > \frac {5 \times 2^{2^{2 \uparrow\uparrow 2n}+2}-8}{9} > 2^{2^{2 \uparrow\uparrow 2n}} = 2 \uparrow\uparrow (2n+2)</math> | <math>g(n) = \frac {5 \times 2^{2^{f^{n}(0)+1}+2}-8}{9} > \frac {5 \times 2^{2^{2 \uparrow\uparrow 2n}+2}-8}{9} > 2^{2^{2 \uparrow\uparrow 2n}} = 2 \uparrow\uparrow (2n+2)</math> | ||
Line 29: | Line 29: | ||
<math>g^{k}(n) > (2 \uparrow\uparrow)^{k}(2n+2) > (2 \uparrow\uparrow)^{k}2n</math> | <math>g^{k}(n) > (2 \uparrow\uparrow)^{k}(2n+2) > (2 \uparrow\uparrow)^{k}2n</math> | ||
==Lower bound on | ==Lower bound on g^n1(n0)== | ||
<math>g^{n1}(n0) = g^{2^{2^{32}+1}-4}(\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) > g^{2^{2^{32}+1}-4}(2^{2^{2^{32}}}) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2^{2^{2^{32}}}</math> ; Note that <math>2 \uparrow\uparrow 6 < 2^{2^{2^{32}}} < 2 \uparrow\uparrow 7</math> | <math>g^{n1}(n0) = g^{2^{2^{32}+1}-4}(\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) > g^{2^{2^{32}+1}-4}(2^{2^{2^{32}}}) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2^{2^{2^{32}}}</math> ; Note that <math>2 \uparrow\uparrow 6 < 2^{2^{2^{32}}} < 2 \uparrow\uparrow 7</math> | ||
Line 35: | Line 35: | ||
<math>g^{n1}(n0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}2</math> | <math>g^{n1}(n0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}2</math> | ||
==Lower bound on | ==Lower bound on f^g^n1(n0)(0)== | ||
<math>g^{n1}(n0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}2</math> and <math>f^{n}(0) > 2 \uparrow\uparrow 2n</math> | <math>g^{n1}(n0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}2</math> and <math>f^{n}(0) > 2 \uparrow\uparrow 2n</math> | ||
Revision as of 11:51, 18 August 2025
Better lower bound for BB(4,3)
Definitions
Σ =
Lower bound on f^n(0)
Lower bound on g^k(n)
Lower bound on g^n1(n0)
; Note that
Lower bound on f^g^n1(n0)(0)
and
Lower bound on Σ
Σ =
Σ >