User:Polygon/Better lower bound for BB(4,3): Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
(Created page for a slightly bigger lower bound for BB(4,3))
 
(Fixed weird headings)
Line 10: Line 10:


Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7</math>
Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7</math>
==Lower bound on <math>f^{n}(0)</math>==
==Lower bound on f^n(0)==
<math>f(n) = 2^{2^{n+1}}</math>
<math>f(n) = 2^{2^{n+1}}</math>


Line 20: Line 20:


<math>=> f^{n}(0) > 2 \uparrow\uparrow 2n</math>
<math>=> f^{n}(0) > 2 \uparrow\uparrow 2n</math>
==Lower bound on <math>g^{k}(n)</math>==
==Lower bound on g^k(n)==
<math>g(n) = \frac {5 \times 2^{2^{f^{n}(0)+1}+2}-8}{9} > \frac {5 \times 2^{2^{2 \uparrow\uparrow 2n}+2}-8}{9} > 2^{2^{2 \uparrow\uparrow 2n}} = 2 \uparrow\uparrow (2n+2)</math>
<math>g(n) = \frac {5 \times 2^{2^{f^{n}(0)+1}+2}-8}{9} > \frac {5 \times 2^{2^{2 \uparrow\uparrow 2n}+2}-8}{9} > 2^{2^{2 \uparrow\uparrow 2n}} = 2 \uparrow\uparrow (2n+2)</math>


Line 29: Line 29:
<math>g^{k}(n) > (2 \uparrow\uparrow)^{k}(2n+2) > (2 \uparrow\uparrow)^{k}2n</math>
<math>g^{k}(n) > (2 \uparrow\uparrow)^{k}(2n+2) > (2 \uparrow\uparrow)^{k}2n</math>


==Lower bound on <math>g^{n1}(n0)</math>==
==Lower bound on g^n1(n0)==
<math>g^{n1}(n0) = g^{2^{2^{32}+1}-4}(\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) > g^{2^{2^{32}+1}-4}(2^{2^{2^{32}}}) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2^{2^{2^{32}}}</math> ; Note that <math>2 \uparrow\uparrow 6 < 2^{2^{2^{32}}} < 2 \uparrow\uparrow 7</math>
<math>g^{n1}(n0) = g^{2^{2^{32}+1}-4}(\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) > g^{2^{2^{32}+1}-4}(2^{2^{2^{32}}}) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2^{2^{2^{32}}}</math> ; Note that <math>2 \uparrow\uparrow 6 < 2^{2^{2^{32}}} < 2 \uparrow\uparrow 7</math>


Line 35: Line 35:


<math>g^{n1}(n0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}2</math>
<math>g^{n1}(n0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}2</math>
==Lower bound on <math>f^{g^{n1}(n0)}(0)</math>==
==Lower bound on f^g^n1(n0)(0)==
<math>g^{n1}(n0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}2</math> and <math>f^{n}(0) > 2 \uparrow\uparrow 2n</math>
<math>g^{n1}(n0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}2</math> and <math>f^{n}(0) > 2 \uparrow\uparrow 2n</math>



Revision as of 11:51, 18 August 2025

Better lower bound for BB(4,3)

Definitions

Σ =

Lower bound on f^n(0)

Lower bound on g^k(n)

Lower bound on g^n1(n0)

 ; Note that

Lower bound on f^g^n1(n0)(0)

and

Lower bound on Σ

Σ =

Σ >