User:Polygon/Better lower bound for BB(4,3): Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
Polygon (talk | contribs)
Created page for a slightly bigger lower bound for BB(4,3)
 
Polygon (talk | contribs)
Fixed weird headings
Line 10: Line 10:


Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7</math>
Σ = <math>5 \times 2^{2^{f^{g^{n1}(n0)}(0)+1}+2}+7</math>
==Lower bound on <math>f^{n}(0)</math>==
==Lower bound on f^n(0)==
<math>f(n) = 2^{2^{n+1}}</math>
<math>f(n) = 2^{2^{n+1}}</math>


Line 20: Line 20:


<math>=> f^{n}(0) > 2 \uparrow\uparrow 2n</math>
<math>=> f^{n}(0) > 2 \uparrow\uparrow 2n</math>
==Lower bound on <math>g^{k}(n)</math>==
==Lower bound on g^k(n)==
<math>g(n) = \frac {5 \times 2^{2^{f^{n}(0)+1}+2}-8}{9} > \frac {5 \times 2^{2^{2 \uparrow\uparrow 2n}+2}-8}{9} > 2^{2^{2 \uparrow\uparrow 2n}} = 2 \uparrow\uparrow (2n+2)</math>
<math>g(n) = \frac {5 \times 2^{2^{f^{n}(0)+1}+2}-8}{9} > \frac {5 \times 2^{2^{2 \uparrow\uparrow 2n}+2}-8}{9} > 2^{2^{2 \uparrow\uparrow 2n}} = 2 \uparrow\uparrow (2n+2)</math>


Line 29: Line 29:
<math>g^{k}(n) > (2 \uparrow\uparrow)^{k}(2n+2) > (2 \uparrow\uparrow)^{k}2n</math>
<math>g^{k}(n) > (2 \uparrow\uparrow)^{k}(2n+2) > (2 \uparrow\uparrow)^{k}2n</math>


==Lower bound on <math>g^{n1}(n0)</math>==
==Lower bound on g^n1(n0)==
<math>g^{n1}(n0) = g^{2^{2^{32}+1}-4}(\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) > g^{2^{2^{32}+1}-4}(2^{2^{2^{32}}}) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2^{2^{2^{32}}}</math> ; Note that <math>2 \uparrow\uparrow 6 < 2^{2^{2^{32}}} < 2 \uparrow\uparrow 7</math>
<math>g^{n1}(n0) = g^{2^{2^{32}+1}-4}(\frac {5 \times 2^{2^{2^{32}+1}+1}-4}{9}) > g^{2^{2^{32}+1}-4}(2^{2^{2^{32}}}) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-4}2^{2^{2^{32}}}</math> ; Note that <math>2 \uparrow\uparrow 6 < 2^{2^{2^{32}}} < 2 \uparrow\uparrow 7</math>


Line 35: Line 35:


<math>g^{n1}(n0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}2</math>
<math>g^{n1}(n0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}2</math>
==Lower bound on <math>f^{g^{n1}(n0)}(0)</math>==
==Lower bound on f^g^n1(n0)(0)==
<math>g^{n1}(n0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}2</math> and <math>f^{n}(0) > 2 \uparrow\uparrow 2n</math>
<math>g^{n1}(n0) > (2 \uparrow\uparrow)^{2^{2^{32}+1}-2}2</math> and <math>f^{n}(0) > 2 \uparrow\uparrow 2n</math>



Revision as of 11:51, 18 August 2025

Better lower bound for BB(4,3)

Definitions

f(n)=22n+1

g(n)=5×22fn(0)+1+289

n0=5×22232+1+149

n1=2232+14

Σ = 5×22fgn1(n0)(0)+1+2+7

Lower bound on f^n(0)

f(n)=22n+1

f(0)=221;f(f(0))=22(221+1)>(2)41;f3(0)=22(22(221+1)+1)>(2)61

fk(0)=22fk1(0)+1>22fk1(0)=>(2)2fk1(0)=>(2)2afka(0)

=>fk(0)>(2)2k1=22k

=>fn(0)>22n

Lower bound on g^k(n)

g(n)=5×22fn(0)+1+289>5×2222n+289>2222n=2(2n+2)

g2(n)>5×22f2(2n+2)(0)+1+289>5×2222(2n+2)+289>22(2n+2)

gk(n)>2(2×gk1(n)+2)=(2)1(2×gk1(n)+2)=>>(2)a(2×gka(n)+2)

gk(n)>(2)k(2n+2)>(2)k2n

Lower bound on g^n1(n0)

gn1(n0)=g2232+14(5×22232+1+149)>g2232+14(22232)>(2)2232+1422232 ; Note that 26<22232<27

(2)2232+1422232>(2)2232+1426=>(2)2232+136>(2)2232+134=>(2)2232+1322=>(2)2232+122

gn1(n0)>(2)2232+122

Lower bound on f^g^n1(n0)(0)

gn1(n0)>(2)2232+122 and fn(0)>22n

fgn1(n0)(0)>f(2)2232+122(0)>2(2×(2)2232+122)>2(2)2232+122=>(2)2232+112

(2)2232+112=>(2)2232+1121=>(2)2232+11=>22232+1

fgn1(n0)(0)>22232+1

Lower bound on Σ

Σ = 5×22fgn1(n0)(0)+1+2+7>5×22(22232+1)+1+2+7>22232+1

Σ > 22232+1