f(n)=22n+1
g(n)=5×22fn(0)+1+2−89
n0=5×22232+1+1−49
n1=2232+1−4
Σ = 5×22fgn1(n0)(0)+1+2+7
f(0)=221;f(f(0))=22(221+1)>(2↑)41;f3(0)=22(22(221+1)+1)>(2↑)61
fk(0)=22fk−1(0)+1>22fk−1(0)=>(2↑)2fk−1(0)=>(2↑)2afk−a(0)
=>fk(0)>(2↑)2k1=2↑↑2k
=>fn(0)>2↑↑2n
g(n)=5×22fn(0)+1+2−89>5×222↑↑2n+2−89>222↑↑2n=2↑↑(2n+2)
g2(n)>5×22f2↑↑(2n+2)(0)+1+2−89>5×222↑↑2↑↑(2n+2)+2−89>2↑↑2↑↑(2n+2)
gk(n)>2↑↑(2×gk−1(n)+2)=(2↑↑)1(2×gk−1(n)+2)=>>(2↑↑)a(2×gk−a(n)+2)
gk(n)>(2↑↑)k(2n+2)>(2↑↑)k2n
gn1(n0)=g2232+1−4(5×22232+1+1−49)>g2232+1−4(22232)>(2↑↑)2232+1−422232 ; Note that 2↑↑6<22232<2↑↑7
(2↑↑)2232+1−422232>(2↑↑)2232+1−42↑↑6=>(2↑↑)2232+1−36>(2↑↑)2232+1−34=>(2↑↑)2232+1−32↑↑2=>(2↑↑)2232+1−22
gn1(n0)>(2↑↑)2232+1−22
gn1(n0)>(2↑↑)2232+1−22 and fn(0)>2↑↑2n
fgn1(n0)(0)>f(2↑↑)2232+1−22(0)>2↑↑(2×(2↑↑)2232+1−22)>2↑↑(2↑↑)2232+1−22=>(2↑↑)2232+1−12
(2↑↑)2232+1−12=>(2↑↑)2232+1−12↑↑1=>(2↑↑)2232+11=>2↑↑↑2232+1
fgn1(n0)(0)>2↑↑↑2232+1
Σ = 5×22fgn1(n0)(0)+1+2+7>5×22(2↑↑↑2232+1)+1+2+7>2↑↑↑2232+1
Σ > 2↑↑↑2232+1