User:Polygon/Collection of BB Champions: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
(Moved section for Instruction-limited Busy Beavers)
(→‎State-and-Symbol-Limited Busy Beaver functions: Updated BB(4,3) to slightly larger lower bound)
 
(21 intermediate revisions by the same user not shown)
Line 1: Line 1:
A collection of Busy Beaver [[Champions]] including Champions for BB-Adjacent [[:Category:Functions|functions]]. Note that for all functions with the input format f(n,m), n denotes the number of states and m denotes the number of symbols of the relevant Busy Beaver domain. Note that for functions with this input format f(n) = f(n,2).
A collection of Busy Beaver [[Champions]] including Champions for BB-Adjacent [[:Category:Functions|functions]]. Note that for all functions with the input format f(n,m), n denotes the number of states and m denotes the number of symbols of the relevant Busy Beaver domain. Note that for functions with this input format f(n) = f(n,2).
='''Original Busy Beaver Functions'''=
='''State-and-Symbol-Limited Busy Beaver functions'''=
==Maximum Shifts Function ([[Busy Beaver Functions|S(n,m)]], also commonly called BB(n,m))==
=='''Original Busy Beaver Functions'''==
'''2 Symbols:'''
===Maximum Shifts Function ([[Busy Beaver Functions|S(n,m)]], also commonly called BB(n,m))===
{| class="wikitable"
{| class="wikitable"
|+
|+
!
!'''2 Symbols:'''
!Runtime
!Runtime
!Champions
!Champions
Line 93: Line 93:
|
|
|}
|}
'''3 Symbols:'''
{| class="wikitable"
{| class="wikitable"
|+
|+
!
!'''3 Symbols:'''
!Runtime
!Runtime
!Champions
!Champions
Line 113: Line 112:
|-
|-
|[[BB(4,3)]]
|[[BB(4,3)]]
|<math>> 2 \uparrow\uparrow\uparrow (2^{2^{32}+1}-1)</math>
|<math>> 2 \uparrow\uparrow\uparrow (2^{2^{32}+1})</math>
|{{TM|0RB1RZ0RB_1RC1LB2LB_1LB2RD1LC_1RA2RC0LD|halt}}
|{{TM|0RB1RZ0RB_1RC1LB2LB_1LB2RD1LC_1RA2RC0LD|halt}}
|}
|}
'''4 Symbols:'''
{| class="wikitable"
{| class="wikitable"
|+
|+
!
!'''4 Symbols:'''
!Runtime
!Runtime
!Champions
!Champions
Line 135: Line 133:
|{{TM|1RB3LB1RZ2RA_2LC3RB1LC2RA_3RB1LB3LC2RC|halt}}
|{{TM|1RB3LB1RZ2RA_2LC3RB1LC2RA_3RB1LB3LC2RC|halt}}
|}
|}
'''5 Symbols:'''
{| class="wikitable"
{| class="wikitable"
|+
|+
!
!'''5 Symbols:'''
!Runtime
!Runtime
!Champions
!Champions
Line 154: Line 151:
|{{TM|1RB3LB4LC2RA4LB_2LC3RB1LC2RA1RZ_3RB1LB3LC2RC4LC|halt}}
|{{TM|1RB3LB4LC2RA4LB_2LC3RB1LC2RA1RZ_3RB1LB3LC2RC4LC|halt}}
|}
|}
'''6 Symbols:'''
{| class="wikitable"
{| class="wikitable"
|+
|+
!
!'''6 Symbols:'''
!Runtime
!Runtime
!Champions
!Champions
Line 169: Line 165:
|{{TM|1RB3RB5RA1LB5LA2LB_2LA2RA4RB1RZ3LB2LA|halt}}
|{{TM|1RB3RB5RA1LB5LA2LB_2LA2RA4RB1RZ3LB2LA|halt}}
|}
|}
 
===Maximum Score Function ([[Busy Beaver Functions|Σ(n,m)]])===
==Maximum Score Function ([[Busy Beaver Functions|Σ(n,m)]])==
'''2 Symbols:'''
{| class="wikitable"
{| class="wikitable"
|+
|+
!
!'''2 Symbols:'''
!Score
!Score
!Champions
!Champions
Line 206: Line 200:
|{{TM|1RB0RA_1LC1LF_1RD0LB_1RA1LE_1RZ0LC_1RG1LD_0RG0RF|halt}}
|{{TM|1RB0RA_1LC1LF_1RD0LB_1RA1LE_1RZ0LC_1RG1LD_0RG0RF|halt}}
|}
|}
'''3 Symbols:'''
{| class="wikitable"
{| class="wikitable"
|+
|+
!
!'''3 Symbols:'''
!Score
!Score
!Champions
!Champions
Line 226: Line 219:
|-
|-
|Σ(4,3)
|Σ(4,3)
|<math>> 2 \uparrow\uparrow\uparrow 2^{2^{32}+1}-1</math>
|<math>> 2 \uparrow\uparrow\uparrow (2^{2^{32}+1})</math>
|{{TM|0RB1RZ0RB_1RC1LB2LB_1LB2RD1LC_1RA2RC0LD|halt}}
|{{TM|0RB1RZ0RB_1RC1LB2LB_1LB2RD1LC_1RA2RC0LD|halt}}
|}
|}
'''4 Symbols:'''
{| class="wikitable"
{| class="wikitable"
|+
|+
!
!'''4 Symbols:'''
!Score
!Score
!Champions
!Champions
Line 248: Line 240:
|{{TM|1RB3LB1RZ2RA_2LC3RB1LC2RA_3RB1LB3LC2RC|halt}}
|{{TM|1RB3LB1RZ2RA_2LC3RB1LC2RA_3RB1LB3LC2RC|halt}}
|}
|}
'''5 Symbols:'''
{| class="wikitable"
{| class="wikitable"
|+
|+
!
!'''5 Symbols:'''
!Score
!Score
!Champions
!Champions
Line 263: Line 254:
|{{TM|1RB3LA4RB0RB2LA_1LB2LA3LA1RA1RZ|halt}}
|{{TM|1RB3LA4RB0RB2LA_1LB2LA3LA1RA1RZ|halt}}
|}
|}
'''6 Symbols:'''
{| class="wikitable"
{| class="wikitable"
|+
|+
!
!'''6 Symbols:'''
!Score
!Score
!Champions
!Champions
Line 278: Line 268:
|{{TM|1RB3RB5RA1LB5LA2LB_2LA2RA4RB1RZ3LB2LA|halt}}
|{{TM|1RB3RB5RA1LB5LA2LB_2LA2RA4RB1RZ3LB2LA|halt}}
|}
|}
 
=='''Beeping Busy Beavers'''==
='''Beeping Busy Beavers'''=
===Beeping Busy Beaver ([[BBB]](n,m))===
==Beeping Busy Beaver ([[BBB]](n,m))==
'''2 Symbols:'''
{| class="wikitable"
{| class="wikitable"
|+
|+
!
!'''2 Symbols:'''
!Steps taken
!Steps taken
!Champions
!Champions
Line 306: Line 294:
|BBB(5)
|BBB(5)
|<math>\geq 10^{14006}</math>
|<math>\geq 10^{14006}</math>
|
|{{TM|1RB1LE_0LC0LB_0LD1LC_1RD1RA_0RC0LA}}
|}
|}
'''3 Symbols:'''
{| class="wikitable"
{| class="wikitable"
|+
|+
!
!'''3 Symbols:'''
!Steps taken
!Steps taken
!Champions
!Champions
Line 327: Line 314:
|{{TM|1RB0LB2LA_1LA0RC0LB_2RC2RB0LC}}
|{{TM|1RB0LB2LA_1LA0RC0LB_2RC2RB0LC}}
|}
|}
'''4 Symbols:'''
Note: The BBB(2,3) champion might be {{TM|1RB0LB2LA_1LA0RC0LB_2RC2RB0LC}}.
{| class="wikitable"
{| class="wikitable"
|+
|+
!
!'''4 Symbols:'''
!Steps taken
!Steps taken
!Champions
!Champions
Line 339: Line 326:
|-
|-
|BBB(2,4)
|BBB(2,4)
|<math>> 10^{24}</math><ref name=":2" />
|<math>\geq 205\,770\,076\,433\,044\,242\,247\,859 > 2\times 10^{23}</math><ref name=":3" />
|
|{{TM|1RB2LA1RA1LB_0LB2RB3RB1LA}}
|}
|}
 
===Beeping Booping Busy Beaver ([[Beeping Busy Beaver#Beeping Booping Busy Beavers|BBBB]](n,m))===
==Beeping Booping Busy Beaver ([[Beeping Busy Beaver#Beeping Booping Busy Beavers|BBBB]](n,m))==
There are currently no known/available Champions for this function.
There are currently no known/available Champions for this function.
='''Maximum Consecutive Ones Function ([[Num]](n,m))'''=
=='''Maximum Consecutive Ones Function ([[Num]](n,m))'''==
'''2 Symbols:'''
{| class="wikitable"
{| class="wikitable"
|+
|+
!
!'''2 Symbols:'''
!Number of Ones
!Number of Ones
!Champions
!Champions
Line 373: Line 358:
|{{TM|1RB1LA_1RC1LE_1RD1RE_0LA1RC_1RZ0LB|halt}} {{TM|0RB1LD_1LC1RB_1LD1RE_1LA1LE_1LZ0RC|halt}}
|{{TM|1RB1LA_1RC1LE_1RD1RE_0LA1RC_1RZ0LB|halt}} {{TM|0RB1LD_1LC1RB_1LD1RE_1LA1LE_1LZ0RC|halt}}
|}
|}
='''Maximum Space Function ([[Busy Beaver Functions#Other Busy Beaver functions|BB<sub>space</sub>]](n,m))'''=
=='''Maximum Space Function ([[Busy Beaver Functions#Other Busy Beaver functions|BB<sub>space</sub>]](n,m))'''==
'''2 Symbols:'''
{| class="wikitable"
{| class="wikitable"
|+
|+
!
!'''2 Symbols:'''
!Cells visited
!Cells visited
!Champions
!Champions
Line 397: Line 381:
|
|
|}
|}
 
=='''Reversible Turing Machines'''==
='''Reversible Turing Machines'''=
===Maximum Shifts Function ([[Reversible Turing Machine|BB<sub>rev</sub>]](n,m))===
==Maximum Shifts Function ([[Reversible Turing Machine|BB<sub>rev</sub>]](n,m))==
'''2 Symbols:'''
{| class="wikitable"
{| class="wikitable"
|+
|+
!
!'''2 Symbols:'''
!Steps
!Steps
!Champions
!Champions
Line 435: Line 417:
|{{TM|1RB1LD_0LC0LD_1LC1LA_0LA1RE_0RF0RE_0RG1RF_0RB1RZ|halt}}
|{{TM|1RB1LD_0LC0LD_1LC1LA_0LA1RE_0RF0RE_0RG1RF_0RB1RZ|halt}}
|}
|}
==Maximum Score Function (Σ<sub>rev</sub>(n,m))==
===Maximum Score Function (Σ<sub>rev</sub>(n,m))===
'''2 Symbols:'''
{| class="wikitable"
{| class="wikitable"
|+
|+
!
!'''2 Symbols:'''
!Score
!Score
!Champions
!Champions
Line 467: Line 448:
|{{TM|1RB1LD_1LC1RE_0LD0LC_0RE0RF_0RA1RZ_1RF1RA|halt}}
|{{TM|1RB1LD_1LC1RE_0LD0LC_0RE0RF_0RA1RZ_1RF1RA|halt}}
|}
|}
='''Blanking Busy Beaver ([[Busy Beaver Functions#Other Busy Beaver functions|BLB(n,m)]])'''=
=='''Blanking Busy Beaver ([[Busy Beaver Functions#Other Busy Beaver functions|BLB(n,m)]])'''==
'''2 Symbols:'''
{| class="wikitable"
{| class="wikitable"
|+
|+
!
!'''2 Symbols:'''
!Steps
!Steps
!Champions
!Champions
|-
|-
|BLB(1)
|BLB(1)
|
|inexistent
|
|inexistent
|-
|-
|BLB(2)
|BLB(2)
|<math>\geq 6</math><ref name=":3">Nick Drozd. "[https://nickdrozd.github.io/2022/02/11/latest-beeping-busy-beaver-results.html Latest Beeping Busy Beaver Results]". Accessed 15 August 2025.</ref>
|<math>\geq 8</math><ref name=":3">Nick Drozd. "[https://nickdrozd.github.io/2021/02/14/blanking-beavers.html Blanking Beavers]". Accessed 15 August 2025.</ref>
|
|{{TM|1RB0RA_1LB1LA}}
|-
|-
|BLB(3)
|BLB(3)
|<math>\geq 34</math><ref name=":3" />
|<math>\geq 34</math><ref name=":4">Nick Drozd. "[https://nickdrozd.github.io/2022/02/11/latest-beeping-busy-beaver-results.html Latest Beeping Busy Beaver Results]". Accessed 15 August 2025.</ref>
|
|{{TM|1RB1LB_1LA1LC_1RC0LC}}
|-
|-
|BLB(4)
|BLB(4)
Line 491: Line 471:
|{{TM|1RB1LD_1RC1RB_1LC1LA_0RC0RD}}
|{{TM|1RB1LD_1RC1RB_1LC1LA_0RC0RD}}
|}
|}
'''3 Symbols:'''
{| class="wikitable"
{| class="wikitable"
|+
|+
!
!'''3 Symbols:'''
!Steps
!Steps
!Champions
!Champions
|-
|-
|BLB(1,3)
|BLB(1,3)
|
|inexistent
|
|inexistent
|-
|-
|BLB(2,3)
|BLB(2,3)
|<math>\geq 77</math><ref name=":3" />
|<math>\geq 77</math><ref name=":4" />
|
|{{TM|1RB2LA0RB_1LA0LB1RA}}
|}
|}
'''4 Symbols:'''
{| class="wikitable"
{| class="wikitable"
|+
|+
!
!'''4 Symbols:'''
!Steps
!Steps
!Champions
!Champions
|-
|-
|BLB(1,4)
|BLB(1,4)
|
|inexistent
|
|inexistent
|-
|-
|BLB(2,4)
|BLB(2,4)
|<math>\geq 1\,367\,361\,263\,049</math><ref name=":3" />
|<math>\geq 1\,367\,361\,263\,049</math><ref name=":4" />
|
|{{TM|1RB2RA1RA2RB_2LB3LA0RB0RA}}
|}
|}
 
=='''Lazy Beaver'''==
='''Lazy Beaver'''=
===Shifts Function ([[Lazy Beaver|LB]](n,m))===
==Shifts Function ([[Lazy Beaver|LB]](n,m))==
{| class="wikitable"
{| class="wikitable"
|+
|+
Line 574: Line 551:
|
|
|}
|}
='''Period-oriented Busy Beavers'''=
=='''Period-oriented Busy Beavers'''==
==Busy Preperiodic Beaver ([[BBS]](n,m))==
===Busy Preperiodic Beaver ([[BBS]](n,m))===
'''2 Symbols:'''
{| class="wikitable"
{| class="wikitable"
|+
|+
!
!'''2 Symbols:'''
!Preperiod
!Preperiod
!Champions
!Champions
|-
|-
|BBS(1,2)
|BBS(1,2)
|
|<math>0</math>
|
|{{TM|1RA---}}
|-
|-
|BBS(2,2)
|BBS(2,2)
|
|<math>\geq 9</math>
|
|{{TM|1RB0LB_1LA0RB}} proven winner?
|-
|-
|BBS(3,2)
|BBS(3,2)
Line 599: Line 575:
|{{TM|1RB1LC_0LA1RD_0RB0LC_1LA0RD}}
|{{TM|1RB1LC_0LA1RD_0RB0LC_1LA0RD}}
|}
|}
'''3 Symbols:''' It seems that currently no information is available for this domain.
'''4 Symbols:'''
{| class="wikitable"
{| class="wikitable"
|+
|+
!
!'''3 Symbols:'''
!Preperiod
!Champions
|-
|BBS(1,3)
|<math>0</math>
|{{TM|1RA------}}
|}
{| class="wikitable"
|+
!'''4 Symbols:'''
!Preperiod
!Preperiod
!Champions
!Champions
|-
|-
|BBS(1,4)
|BBS(1,4)
|
|<math>0</math>
|
|{{TM|1RA---------}}
|-
|-
|BBS(2,4)
|BBS(2,4)
Line 616: Line 599:
|{{TM|1RB2LA0RA3LA_1LA1LB3RB1RA}}
|{{TM|1RB2LA0RA3LA_1LA1LB3RB1RA}}
|}
|}
==Busy Periodic Beaver ([[BBP]](n,m))==
===Busy Periodic Beaver ([[BBP]](n,m))===
'''2 Symbols:'''
{| class="wikitable"
{| class="wikitable"
|+
|+
!
!'''2 Symbols:'''
!Period
!Period
!Champions
!Champions
|-
|-
|BBP(1,2)
|BBP(1,2)
|
|<math>1</math>
|
|{{TM|1RA---}}
|-
|-
|BBP(2,2)
|BBP(2,2)
|
|<math>\geq 9</math>
|
|{{TM|1RB0RB_1LB1RA}} proven winner?
|-
|-
|BBP(3,2)
|BBP(3,2)
Line 640: Line 622:
|{{TM|1RB0LA_0RC1RD_1LD0RB_1LA1RB}}
|{{TM|1RB0LA_0RC1RD_1LD0RB_1LA1RB}}
|}
|}
'''3 Symbols:''' It seems that currently no information is available for this domain.
'''4 Symbols:'''
{| class="wikitable"
{| class="wikitable"
|+
|+
!
!'''3 Symbols:'''
!Period
!Champions
|-
|BBP(1,3)
|<math>1</math>
|{{TM|1RA------}}
|}
{| class="wikitable"
|+
!'''4 Symbols:'''
!Period
!Period
!Champions
!Champions
|-
|-
|BBP(1,4)
|BBP(1,4)
|
|<math>1</math>
|
|{{TM|1RA---------}}
|-
|-
|BBP(2,4)
|BBP(2,4)
Line 657: Line 646:
|{{TM|1RB0RA3LB1RB_2LA0LB1RA2RB}}
|{{TM|1RB0RA3LB1RB_2LA0LB1RA2RB}}
|}
|}
='''Instruction-Limited Busy Beaver'''=
='''Instruction-Limited Busy Beaver'''=
==Maximum amount of steps ([[BBi]](n))==
=='''Instruction-Limited Classical Busy Beaver Functions'''==
===Instruction-Limited Maximum Shifts Function ([[BBi]](n))===
{| class="wikitable"
{| class="wikitable"
|+
|+
Line 696: Line 687:
|<math>>6.889 \times 10^{1565}</math>
|<math>>6.889 \times 10^{1565}</math>
|{{TM|1RB1LA------_1RC3LB1RB---_2LA2LC---0LC|halt}}
|{{TM|1RB1LA------_1RC3LB1RB---_2LA2LC---0LC|halt}}
|-
|BBi(9)
|<math>>10^{10^{10^{3\,314\,360}}}</math>
|{{TM|1RB3LA4RB0RB2LA_1LB2LA3LA1RA---|halt}}
|}
|}
==Maximum Score ([[Σi]](n))==
===Instruction-Limited Maximum Score Function ([[Σi]](n))===
{| class="wikitable"
{| class="wikitable"
|+
|+
Line 735: Line 730:
|<math>>1.355 \times 10^{783}</math>
|<math>>1.355 \times 10^{783}</math>
|{{TM|1RB1LA------_1RC3LB1RB---_2LA2LC---0LC|halt}}
|{{TM|1RB1LA------_1RC3LB1RB---_2LA2LC---0LC|halt}}
|-
|Σi(9)
|<math>>10^{10^{10^{3\,314\,360}}}</math>
|{{TM|1RB3LA4RB0RB2LA_1LB2LA3LA1RA---|halt}}
|}
|}


='''Busy Beaver for Lambda Calculus'''=
=='''Instruction-Limited Blanking Busy Beaver ([[Instruction-Limited Busy Beaver#Instruction-Limited Busy Beaver Variants|BLBi(n)]])'''==
==Regular Busy Beaver for Lambda Calculus ([[BBλ]](n))==
{| class="wikitable"
|+
!
!Steps
!Champions
|-
|BLBi(1)
|inexistent
|inexistent
|-
|BLBi(2)
|inexistent
|inexistent
|-
|BLBi(3)
|<math>4</math>
|
|-
|BLBi(4)
|<math>12</math>
|
|-
|BLBi(5)
|<math>30</math>
|
|-
|BLBi(6)
|<math>77</math>
|{{TM|1RB2LA0RB_1LA0LB1RA}}
|-
|BLBi(7)
|<math>808</math>
|
|-
|BLBi(8)
|<math>\geq 1\,367\,361\,263\,049</math>
|{{TM|1RB2RA1RA2RB_2LB3LA0RB0RA}}
|}
=='''Instruction-Limited Greedy Busy Beaver ([[Instruction-Limited Busy Beaver#Instruction-Limited Busy Beaver Variants|gBBi(n)]])'''==
{| class="wikitable"
|+
!
!Steps
!Champions
|-
|gBBi(1)
|<math>1</math>
|
|-
|gBBi(2)
|<math>3</math>
|
|-
|gBBi(3)
|<math>5</math>
|
|-
|gBBi(4)
|<math>13</math>
|
|-
|gBBi(5)
|<math>19</math>
|
|-
|gBBi(6)
|<math>25</math>
|
|-
|gBBi(7)
|<math>41</math>
|
|-
|gBBi(8)
|<math>55</math>
|
|-
|gBBi(9)
|<math>238</math>
|
|-
|gBBi(10)
|<math>941</math>
|
|-
|gBBi(11)
|<math>1341</math>
|
|-
|gBBi(12)
|<math>10465</math>
|
|-
|gBBi(13)
|<math>10675</math>
|
|-
|gBBi(14)
|<math>\geq 9\,874\,580</math>
|{{TM|0RB6RB1LB---3LA1RB7RB2LB_1LA2RB3LA4RB5RB1LB5LA---|halt}}
|}
='''Program-Limited Busy Beaver'''=
=='''Busy Beaver for Lambda Calculus'''==
===Regular Busy Beaver for Lambda Calculus ([[BBλ]](n))===
For n = 0,1,2,3,5 BBλ(n) is undefined, while for the rest of <math> 20 \geq n </math> BBλ(n) = n.
For n = 0,1,2,3,5 BBλ(n) is undefined, while for the rest of <math> 20 \geq n </math> BBλ(n) = n.
{| class="wikitable"
{| class="wikitable"
Line 803: Line 905:
|-
|-
|BBλ(35)
|BBλ(35)
|<math>5 \times 3^{3^{3}} +6 > 3.8 \times 10^{13}</math>
|<math>5 \times 3^{3^{3}} +6 = 38\,127\,987\,424\,941 > 3.8 \times 10^{13}</math>
|<code>(\1 1 1) (\\2 (2 (2 1)))</code>
|<code>(\1 1 1) (\\2 (2 (2 1)))</code>
|-
|-
Line 811: Line 913:
|-
|-
|BBλ(37)
|BBλ(37)
|<math>BB \lambda(35) +2 =5 \times 3^{3^{3}} +8 > 3.8 \times 10^{13}</math>
|<math>BB \lambda(35) +2 =5 \times 3^{3^{3}} +8 = 38\,127\,987\,424\,943 > 3.8 \times 10^{13}</math>
|<code>\(\1 1 1) (\\2 (2 (2 1)))</code>
|<code>\(\1 1 1) (\\2 (2 (2 1)))</code>
|-
|-
|BBλ(38)
|BBλ(38)
|<math>\geq 5 \times 2^{2^{2^{2^{2}}}} +6 > 10^{10^{4}}</math>
|<math>\geq 5 \times 2^{2^{2^{2^{2}}}} +6 > 10^{19729}</math>
|<code>(\1 1 1 1 1) (\\2 (2 1))</code> and <code>(\1 (1 1) 1 1) (\\2 (2 1))</code>
|<code>(\1 1 1 1 1) (\\2 (2 1))</code> and <code>(\1 (1 1) 1 1) (\\2 (2 1))</code>
|-
|-
|BBλ(39)
|BBλ(39)
|<math>\geq 5 \times 3^{3^{3^{3}}} +6 > 10^{10^{12}}</math>
|<math>\geq 5 \times 3^{3^{3^{3}}} +6 > 10^{3\,638\,334\,640\,024}</math>
|<code>(\1 1 1 1) (\\2 (2 (2 1)))</code>
|<code>(\1 1 1 1) (\\2 (2 (2 1)))</code>
|-
|-
Line 827: Line 929:
|-
|-
|BBλ(41)
|BBλ(41)
|<math>\geq 5 \times 3^{3^{85}} +6 > 10^{10^{40}}</math>
|<math>\geq 5 \times 3^{3^{85}} +6 > 10^{1.7 \times 10^{40}}</math>
|<code>(\1 (\1 1) 1) (\\2 (2 (2 1)))</code>
|<code>(\1 (\1 1) 1) (\\2 (2 (2 1)))</code>
|-
|-
Line 866: Line 968:
|<code>Too large for this list</code>
|<code>Too large for this list</code>
|}
|}
==Oracle Busy Beaver for Lambda Calculus ([[Busy Beaver for lambda calculus#Oracle Busy Beaver|BBλ<sub>1</sub>(n)]])==
===Oracle Busy Beaver for Lambda Calculus ([[Busy Beaver for lambda calculus#Oracle Busy Beaver|BBλ<sub>1</sub>(n)]])===
Note that <math>f(n) = 6 + 5 \times BB \lambda(n)</math>.
Note that <math>f(n) = 6 + 5 \times BB \lambda(n)</math>.
{| class="wikitable"
{| class="wikitable"
Line 931: Line 1,033:
|-
|-
|BBλ<sub>1</sub>(15)
|BBλ<sub>1</sub>(15)
|<math>f(41) \geq 25 \times 3^{3^{85}}+36 > 10^{10^{40}}</math>
|<math>f(41) \geq 25 \times 3^{3^{85}}+36 > 10^{1.7 \times 10^{40}}</math>
|<code>1 (1 (\\2))</code>
|<code>1 (1 (\\2))</code>
|-
|-
Line 970: Line 1,072:
|<code>1(\1)(\1 2 1)(\1)</code>
|<code>1(\1)(\1 2 1)(\1)</code>
|}
|}
='''Doodle Function ([[Doodle function|doodle(c,n)]])'''=
='''Doodle Function ([[Doodle function|doodle(c,n)]])'''=
doodle(1,n) = 1 and doodle(2,n) = n. Also note that doodle(c) = doodle(c,2).
doodle(1,n) = 1 and doodle(2,n) = n. Also note that doodle(c) = doodle(c,2).
'''2 Symbols:'''
{| class="wikitable"
{| class="wikitable"
|+
|+
!
!'''2 Symbols:'''
!Runtime
!Runtime
!Champions
!Champions
Line 985: Line 1,084:
|
|
|}
|}
='''Turmites'''=
='''Turmites'''=
==Terminating Turmites ([[TT]](n,k), 1D Turmites)==
==Terminating Turmites ([[TT]](n,k), 1D Turmites)==

Latest revision as of 10:31, 18 August 2025

A collection of Busy Beaver Champions including Champions for BB-Adjacent functions. Note that for all functions with the input format f(n,m), n denotes the number of states and m denotes the number of symbols of the relevant Busy Beaver domain. Note that for functions with this input format f(n) = f(n,2).

State-and-Symbol-Limited Busy Beaver functions

Original Busy Beaver Functions

Maximum Shifts Function (S(n,m), also commonly called BB(n,m))

2 Symbols: Runtime Champions
BB(1) 1RZ--- (bbch)
BB(2) 1RB1LB_1LA1RZ (bbch) 1RB0LB_1LA1RZ (bbch) 1RB1RZ_1LB1LA (bbch) 1RB1RZ_0LB1LA (bbch) 0RB1RZ_1LA1RB (bbch)
BB(3) 1RB1RZ_1LB0RC_1LC1LA (bbch)
BB(4) 1RB1LB_1LA0LC_1RZ1LD_1RD0RA (bbch)
BB(5) 1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA (bbch)
BB(6) 1RB1RA_1RC1RZ_1LD0RF_1RA0LE_0LD1RC_1RA0RE (bbch)
BB(7) 1RB0RA_1LC1LF_1RD0LB_1RA1LE_1RZ0LC_1RG1LD_0RG0RF (bbch)
BB(8)
BB(9) 1RB1RA_0LC0LF_0RD1LC_1RA1RG_1RZ0RA_1LB1LF_1LH1RE_0LI1LH_1LB0LH (bbch)
BB(10) 1RB1RA_0LC0LF_0RD1LC_1RA1RG_1RZ0RA_1LB1LF_1LH1RE_0LI1LH_0LF0LJ_1LH0LJ (bbch)
BB(11) 1LH1LA_1LI1RG_0RD1LC_0RF1RE_1LJ0RF_1RB1RF_0LC1LH_0LC0LA_1LK1LJ_1RZ0LI_0LD1LE (bbch)
BB(12) 0LJ0RF_1LH1RC_0LD0LG_0RE1LD_1RF1RA_1RB1RF_1LC1LG_1LL1LI_1LK0LH_1RH1LJ_1RZ1LA_1RF1LL (bbch)
BB(14) 1LH1LA_1LI1RG_0RD1LC_0RF1RE_1LJ0RF_1RB1RF_0LC1LH_0LC0LA_1LK1LJ_1RL0LI_0LL1LE_1LM1RZ_0LN1LF_0LJ--- (bbch)
BB(15) 0RH1LD_1RI0RC_1RB1LD_0LD1LE_1LF1RA_1RG0LE_1RB1RG_1RD1RA_0LN0RJ_1RZ0LK_0LK1LL_1RG1LM_0LL0LL_1LO1LN_0LG1LN (bbch)
BB(16)
BB(18)
BB(20)
BB(21)
BB(40)
BB(41)
BB(51)
3 Symbols: Runtime Champions
BB(1,3) 1RZ------ (bbch)
BB(2,3) 1RB2LB1RZ_2LA2RB1LB (bbch)
BB(3,3) 0RB2LA1RA_1LA2RB1RC_1RZ1LB1LC (bbch)
BB(4,3) 0RB1RZ0RB_1RC1LB2LB_1LB2RD1LC_1RA2RC0LD (bbch)
4 Symbols: Runtime Champions
BB(1,4) 1RZ--------- (bbch)
BB(2,4) 1RB2LA1RA1RA_1LB1LA3RB1RZ (bbch)
BB(3,4) [1] 1RB3LB1RZ2RA_2LC3RB1LC2RA_3RB1LB3LC2RC (bbch)
5 Symbols: Runtime Champions
BB(1,5) 1RZ------------ (bbch)
BB(2,5) 1RB3LA4RB0RB2LA_1LB2LA3LA1RA1RZ (bbch)
BB(3,5) 1RB3LB4LC2RA4LB_2LC3RB1LC2RA1RZ_3RB1LB3LC2RC4LC (bbch)
6 Symbols: Runtime Champions
BB(1,6) 1RZ--------------- (bbch)
BB(2,6) [2] 1RB3RB5RA1LB5LA2LB_2LA2RA4RB1RZ3LB2LA (bbch)

Maximum Score Function (Σ(n,m))

2 Symbols: Score Champions
Σ(1) 1RZ--- (bbch)
Σ(2) 1RB1LB_1LA1RZ (bbch)
Σ(3) 1RB1RZ_0RC1RB_1LC1LA (bbch) 1RB1RC_1LC1RZ_1RA0LB (bbch) 1RB1LC_1LA1RB_1LB1RZ (bbch) 1RB1RA_1LC1RZ_1RA1LB (bbch) 1RB1LC_1RC1RZ_1LA0LB (bbch)
Σ(4) 1RB1LB_1LA0LC_1RZ1LD_1RD0RA (bbch) 1RB0RC_1LA1RA_1RZ1RD_1LD0LB (bbch)
Σ(5) 1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA (bbch) 1RB1RA_1LC1LB_1RA1LD_1RA1LE_1RZ0LC (bbch)
Σ(6) 1RB1RA_1RC1RZ_1LD0RF_1RA0LE_0LD1RC_1RA0RE (bbch)
Σ(7) 1RB0RA_1LC1LF_1RD0LB_1RA1LE_1RZ0LC_1RG1LD_0RG0RF (bbch)
3 Symbols: Score Champions
Σ(1,3) 1RZ------ (bbch)
Σ(2,3) 1RB2LB1RZ_2LA2RB1LB (bbch)
Σ(3,3) 0RB2LA1RA_1LA2RB1RC_1RZ1LB1LC (bbch)
Σ(4,3) 0RB1RZ0RB_1RC1LB2LB_1LB2RD1LC_1RA2RC0LD (bbch)
4 Symbols: Score Champions
Σ(1,4) 1RZ--------- (bbch)
Σ(2,4) 1RB2LA1RA1RA_1LB1LA3RB1RZ (bbch)
Σ(3,4) [1] 1RB3LB1RZ2RA_2LC3RB1LC2RA_3RB1LB3LC2RC (bbch)
5 Symbols: Score Champions
Σ(1,5) 1RZ------------ (bbch)
Σ(2,5) 1RB3LA4RB0RB2LA_1LB2LA3LA1RA1RZ (bbch)
6 Symbols: Score Champions
Σ(1,6) 1RZ--------------- (bbch)
Σ(2,6) [2] 1RB3RB5RA1LB5LA2LB_2LA2RA4RB1RZ3LB2LA (bbch)

Beeping Busy Beavers

Beeping Busy Beaver (BBB(n,m))

2 Symbols: Steps taken Champions
BBB(1)
BBB(2) 1RB1LB_1LB1LA (bbch)
BBB(3) 1LB0RB_1RA0LC_1RC1RA (bbch)
BBB(4) 1RB1LD_1RC1RB_1LC1LA_0RC0RD (bbch)
BBB(5) 1RB1LE_0LC0LB_0LD1LC_1RD1RA_0RC0LA (bbch)
3 Symbols: Steps taken Champions
BBB(1,3)
BBB(2,3) [3]
BBB(3,3) 1RB0LB2LA_1LA0RC0LB_2RC2RB0LC (bbch)

Note: The BBB(2,3) champion might be 1RB0LB2LA_1LA0RC0LB_2RC2RB0LC (bbch).

4 Symbols: Steps taken Champions
BBB(1,4)
BBB(2,4) [4] 1RB2LA1RA1LB_0LB2RB3RB1LA (bbch)

Beeping Booping Busy Beaver (BBBB(n,m))

There are currently no known/available Champions for this function.

Maximum Consecutive Ones Function (Num(n,m))

2 Symbols: Number of Ones Champions
num(1) 1RZ--- (bbch)
num(2) 1RB1LB_1LA1LZ (bbch)
num(3) 1RB1LC_1RC1LZ_1LA0LB (bbch)
num(4) 1RB0LA_1RC1LB_1LB1RD_1RZ0RA (bbch)
num(5) 1RB1LA_1RC1LE_1RD1RE_0LA1RC_1RZ0LB (bbch) 0RB1LD_1LC1RB_1LD1RE_1LA1LE_1LZ0RC (bbch)

Maximum Space Function (BBspace(n,m))

2 Symbols: Cells visited Champions
BBspace(1,2)
BBspace(2,2)
BBspace(3,2)
BBspace(4,2)

Reversible Turing Machines

Maximum Shifts Function (BBrev(n,m))

2 Symbols: Steps Champions
BBrev(1)
BBrev(2) 0RB1RZ_1LA1RB (bbch)
BBrev(3) 0RB1RZ_0LC1RA_1RB1LC (bbch)
BBrev(4) 1RB0LD_0LC0RB_1LA1LD_1LC1RZ (bbch)
BBrev(5) 1RB0RD_1RC0RB_1RD1RZ_1LE1LA_0LE0LA (bbch)
BBrev(6) 1RB1LD_1LC1RE_0LD0LC_0RE0RF_0RA1RZ_1RF1RA (bbch)
BBrev(7) 1RB1LD_0LC0LD_1LC1LA_0LA1RE_0RF0RE_0RG1RF_0RB1RZ (bbch)

Maximum Score Function (Σrev(n,m))

2 Symbols: Score Champions
Σrev(1)
Σrev(2) 0RB1RZ_1LA1RB (bbch)
Σrev(3) 0RB1RZ_0LC1RA_1RB1LC (bbch)
Σrev(4) 1RB0LD_0LC0RB_1LA1LD_1LC1RZ (bbch)
Σrev(5) 1RB0RD_1RC0RB_1RD1RZ_1LE1LA_0LE0LA (bbch)
Σrev(6) 1RB1LD_1LC1RE_0LD0LC_0RE0RF_0RA1RZ_1RF1RA (bbch)

Blanking Busy Beaver (BLB(n,m))

2 Symbols: Steps Champions
BLB(1) inexistent inexistent
BLB(2) [4] 1RB0RA_1LB1LA (bbch)
BLB(3) [5] 1RB1LB_1LA1LC_1RC0LC (bbch)
BLB(4) 1RB1LD_1RC1RB_1LC1LA_0RC0RD (bbch)
3 Symbols: Steps Champions
BLB(1,3) inexistent inexistent
BLB(2,3) [5] 1RB2LA0RB_1LA0LB1RA (bbch)
4 Symbols: Steps Champions
BLB(1,4) inexistent inexistent
BLB(2,4) [5] 1RB2RA1RA2RB_2LB3LA0RB0RA (bbch)

Lazy Beaver

Shifts Function (LB(n,m))

1 State 2 States 3 States 4 States 5 States 6 States
2 Symbols
3 Symbols
4 Symbols
5 Symbols
6 Symbols

Period-oriented Busy Beavers

Busy Preperiodic Beaver (BBS(n,m))

2 Symbols: Preperiod Champions
BBS(1,2) 1RA--- (bbch)
BBS(2,2) 1RB0LB_1LA0RB (bbch) proven winner?
BBS(3,2) 1RB1LB_0RC0LA_1LC0LA (bbch)
BBS(4,2) 1RB1LC_0LA1RD_0RB0LC_1LA0RD (bbch)
3 Symbols: Preperiod Champions
BBS(1,3) 1RA------ (bbch)
4 Symbols: Preperiod Champions
BBS(1,4) 1RA--------- (bbch)
BBS(2,4) 1RB2LA0RA3LA_1LA1LB3RB1RA (bbch)

Busy Periodic Beaver (BBP(n,m))

2 Symbols: Period Champions
BBP(1,2) 1RA--- (bbch)
BBP(2,2) 1RB0RB_1LB1RA (bbch) proven winner?
BBP(3,2) 1RB0LA_0RC1LA_1LC0RB (bbch)
BBP(4,2) 1RB0LA_0RC1RD_1LD0RB_1LA1RB (bbch)
3 Symbols: Period Champions
BBP(1,3) 1RA------ (bbch)
4 Symbols: Period Champions
BBP(1,4) 1RA--------- (bbch)
BBP(2,4) 1RB0RA3LB1RB_2LA0LB1RA2RB (bbch)

Instruction-Limited Busy Beaver

Instruction-Limited Classical Busy Beaver Functions

Instruction-Limited Maximum Shifts Function (BBi(n))

Steps Champions
BBi(1) 0RH (bbch) 1RH--- (bbch)
BBi(2) 0RB---_1LA--- (bbch)
BBi(3) 1RB1LB_1LA--- (bbch)
BBi(4) 1RB---_0RC---_1LC0LA (bbch)
BBi(5) 1RB2LB---_2LA2RB1LB (bbch)
BBi(6) 1RB3LA1RA0LA_2LA------3RA (bbch)
BBi(7) 1RB2LA1RA1RA_1LB1LA3RB--- (bbch) 1RB2LA1RA_1LC1LA2RB_---1LA--- (bbch)
BBi(8) 1RB1LA------_1RC3LB1RB---_2LA2LC---0LC (bbch)
BBi(9) 1RB3LA4RB0RB2LA_1LB2LA3LA1RA--- (bbch)

Instruction-Limited Maximum Score Function (Σi(n))

Score Champions
Σi(1) 1RH--- (bbch)
Σi(2) 1RB---_1LA--- (bbch)
Σi(3) 1RB1LB_1LA--- (bbch)
Σi(4) 1RB0LB---_1LA2RA--- (bbch)
Σi(5) 1RB2LB---_2LA2RB1LB (bbch)
Σi(6) 1RB3LA1RA0LA_2LA------3RA (bbch)
Σi(7) 1RB2LA1RA1RA_1LB1LA3RB--- (bbch) 1RB2LA1RA_1LC1LA2RB_---1LA--- (bbch)
Σi(8) 1RB1LA------_1RC3LB1RB---_2LA2LC---0LC (bbch)
Σi(9) 1RB3LA4RB0RB2LA_1LB2LA3LA1RA--- (bbch)

Instruction-Limited Blanking Busy Beaver (BLBi(n))

Steps Champions
BLBi(1) inexistent inexistent
BLBi(2) inexistent inexistent
BLBi(3)
BLBi(4)
BLBi(5)
BLBi(6) 1RB2LA0RB_1LA0LB1RA (bbch)
BLBi(7)
BLBi(8) 1RB2RA1RA2RB_2LB3LA0RB0RA (bbch)

Instruction-Limited Greedy Busy Beaver (gBBi(n))

Steps Champions
gBBi(1)
gBBi(2)
gBBi(3)
gBBi(4)
gBBi(5)
gBBi(6)
gBBi(7)
gBBi(8)
gBBi(9)
gBBi(10)
gBBi(11)
gBBi(12)
gBBi(13)
gBBi(14) 0RB6RB1LB---3LA1RB7RB2LB_1LA2RB3LA4RB5RB1LB5LA--- (bbch)

Program-Limited Busy Beaver

Busy Beaver for Lambda Calculus

Regular Busy Beaver for Lambda Calculus (BBλ(n))

For n = 0,1,2,3,5 BBλ(n) is undefined, while for the rest of BBλ(n) = n.

BBλ(n) Champions
BBλ(21) \(\1 1) (1 (\2))
BBλ(22) \(\1 1) (1 (\\1))\(\1 1 1) (1 1)
BBλ(23) \(\1 1) (1 (\\2))
BBλ(24) \(\1 1 1) (1 (\1))
BBλ(25) \(\1 1) (\1 (2 1))
BBλ(26) (\1 1) (\\2 (1 2))
BBλ(27) \\(\1 1) (\1 (2 1))
BBλ(28) \(\1 1) (\1 (2 (\2))))
BBλ(29) \(\1 1) (\1 (1 (2 1)))
BBλ(30) (\1 1 1) (\\2 (1 2)) and (\1 (1 1)) (\\2 (1 2))
BBλ(31) (\1 1) (\\2 (2 (1 2)))
BBλ(32) \(\1 1) (\1 (1 (2 (\2))))
BBλ(33) \(\1 1) (\1 (1 (1 (2 1))))
BBλ(34) (\1 1 1 1) (\\2 (2 1)) and (\1 (1 1) 1) (\\2 (2 1))
BBλ(35) (\1 1 1) (\\2 (2 (2 1)))
BBλ(36) (\1 1) (\1 (1 (\\2 (2 1))))
BBλ(37) \(\1 1 1) (\\2 (2 (2 1)))
BBλ(38) (\1 1 1 1 1) (\\2 (2 1)) and (\1 (1 1) 1 1) (\\2 (2 1))
BBλ(39) (\1 1 1 1) (\\2 (2 (2 1)))
BBλ(40) (\1 1 1) (\1 (\\2 (2 1)) 1)
BBλ(41) (\1 (\1 1) 1) (\\2 (2 (2 1)))
BBλ(42) \(\1 1 1) (\1 (\\2 (2 1)) 1)
BBλ(43) (\1 1) (\1 (\1 (\\2 (2 1)) 2))
BBλ(44) (\1 1 1 1) (\1 (\\2 (2 1)) 1)
BBλ(45) \(\1 1) (\1 (\1 (\\2 (2 1)) 2))
BBλ(46) \(\1 1 1 1) (\1 (\\2 (2 1)) 1)
BBλ(47)
BBλ(48) (\1 1 1 1 1) (\1 (\\2 (2 1)) 1)
BBλ(49) (\1 1) (\1 (1 (\\1 2 (\\2 (2 1)))))
BBλ(1850) Too large for this list

Oracle Busy Beaver for Lambda Calculus (BBλ1(n))

Note that .

BBλ1(n) Champions
BBλ1(1)
BBλ1(2) 1
BBλ1(3)
BBλ1(4) \1
BBλ1(5) \2
BBλ1(6) \\1
BBλ1(7) \\2
BBλ1(8) 1 (\1)
BBλ1(9) \\2
BBλ1(10) 1 (\\1)
BBλ1(11) 1 (\\2)
BBλ1(12) 1 (1 (\1))
BBλ1(13) 1 (\\2)
BBλ1(14) 1 (1 (\\1))
BBλ1(15) 1 (1 (\\2))
BBλ1(16) 1 (1 (1 (\1)))
BBλ1(17) 1 (1 (\\\2))
BBλ1(18) 1 (\1) 1 (\1)
BBλ1(19) 1 (1 (1 (\\2)))
BBλ1(20) 1 (\\1) 1 (\1)
BBλ1(21) 1 (\\2) 1 (\1)
BBλ1(22) 1 (1(\1)) 1(\1)
BBλ1(28) 1 (\1) 1 (\1) 1 (\1)
BBλ1(29) 1(\1)(\1 2 1)(\1)

Doodle Function (doodle(c,n))

doodle(1,n) = 1 and doodle(2,n) = n. Also note that doodle(c) = doodle(c,2).

2 Symbols: Runtime Champions
doodle(3,2)

Turmites

Terminating Turmites (TT(n,k), 1D Turmites)

Where n is the amount of states and k is the amount of symbols. There are currently no known/available Champions for this function.

2D Turmites (turNing machines)

There are currently no known/available Champions for this function.

References

  1. 1.0 1.1 S. Ligocki. "BB(3,4) > Ack(14)." https://www.sligocki.com/2024/05/22/bb-3-4-a14.html Blog post, 2024. Accessed 15 August 2025.
  2. 2.0 2.1 S. Ligocki, "BB(2,6) > 10↑↑10↑↑10↑↑3". Blog post, 2023. Accessed 15 August 2025.
  3. Nick Drozd. "BBB(3,3) > 10↑↑6". Accessed 15 August 2025.
  4. 4.0 4.1 Nick Drozd. "Blanking Beavers". Accessed 15 August 2025.
  5. 5.0 5.1 5.2 Nick Drozd. "Latest Beeping Busy Beaver Results". Accessed 15 August 2025.