1RB0RA 1LC1LF 1RD0LB 1RA1LE 1RZ0LC 1RG1LD 0RG0RF: Difference between revisions
Jump to navigation
Jump to search
(Fix broken math) |
(Added "halt" to bbch-link) |
||
(10 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{machine|1RB0RA_1LC1LF_1RD0LB_1RA1LE_1RZ0LC_1RG1LD_0RG0RF}} | {{machine|1RB0RA_1LC1LF_1RD0LB_1RA1LE_1RZ0LC_1RG1LD_0RG0RF}} | ||
{{TM|1RB0RA_1LC1LF_1RD0LB_1RA1LE_1RZ0LC_1RG1LD_0RG0RF}} is | {{TM|1RB0RA_1LC1LF_1RD0LB_1RA1LE_1RZ0LC_1RG1LD_0RG0RF|halt}} is the current [[BB(7)]] [[champion]], running for over <math>2 \uparrow^{11} 2 \uparrow^{11} 3</math> steps before it halts. It was discovered by Pavel Kropitz on 10 May 2025 ([https://discord.com/channels/960643023006490684/1369339127652159509/1370678203395604562 Discord link]) and analyzed by Shawn Ligocki (here) on 13 May 2025. | ||
== Analysis by Shawn Ligocki == | == Analysis by Shawn Ligocki == | ||
Line 37: | Line 37: | ||
Let | Let | ||
<math display=block>\begin{array}{l} | <math display="block">\begin{array}{l} | ||
g_0(x) & = & 2x + 4 \\ | |||
g_{k+1}(x) & = & g_k^{x+2}(0) \\ | |||
\end{array}</math> | \end{array}</math> | ||
Line 45: | Line 45: | ||
<math display="block"> | <math display="block"> | ||
B(a; \underbrace{0, \cdots, 0}_k, n, ...) \to B( | B(a; \underbrace{0, \cdots, 0}_k, n, ...) \to B(g_k^n(a); \underbrace{0, \cdots, 0}_k, 0, ...) | ||
</math> | </math> | ||
Line 53: | Line 53: | ||
<math display="block">\begin{array}{l} | <math display="block">\begin{array}{l} | ||
a_0 & = & 2 \\ | a_0 & = & 2 \\ | ||
a_{k+1} & = & | a_{k+1} & = & g_k(a_k) \\ | ||
\end{array} | \end{array} | ||
</math> | </math> | ||
Line 71: | Line 71: | ||
and so this TM halts with a sigma score of <math> \sigma = 3 a_{12} + 33 </math> | and so this TM halts with a sigma score of <math> \sigma = 3 a_{12} + 33 </math> | ||
Note that <math> | Note that <math>g_k(x) = (2 \uparrow^k (x+4)) - 4</math> and so for <math>k \ge 2</math>, | ||
<math display="block"> | <math display="block"> | ||
a_{k+1} + 4 > 2 \uparrow^k 2 \uparrow^k 3 | |||
</math> | </math> | ||
and so this TM halts with sigma score <math>\sigma > 2 \uparrow^{ | and so this TM halts with sigma score <math>\sigma > 2 \uparrow^{11} 2 \uparrow^{11} 3</math>. | ||
This bound is pretty tight: <math>\sigma < 2 \uparrow^{ | This bound is pretty tight: <math>\sigma < 2 \uparrow^{11} 2 \uparrow^{11} 4 = 2 \uparrow^{12} 4</math>. |
Latest revision as of 18:13, 16 August 2025
1RB0RA_1LC1LF_1RD0LB_1RA1LE_1RZ0LC_1RG1LD_0RG0RF
(bbch) is the current BB(7) champion, running for over steps before it halts. It was discovered by Pavel Kropitz on 10 May 2025 (Discord link) and analyzed by Shawn Ligocki (here) on 13 May 2025.
Analysis by Shawn Ligocki
Consider general configurations matching the regex:
Low level rules
01 1 01^n 0011100 A> 00 --> 1 01^n+2 0011100 A> 01^3 11 01^n 0011100 A> 0^6 --> 1 01^n+5 1 01 0011100 A> 01^3 (1 01)^k+1 11 01^n 0011100 A> 0^6 --> 1 01^n+6 (1 01)^k 11 01 0011100 A> 011 (1 01)^k 11 01^n 0011100 A> 0^2 --> 1 Z> 111 01^n+1 00 101^k+2
Mid level rules
Let
and let B(a; [x]*k, y, ...)
= (In other words, [x]*k
represents k repeats of the value x in a config).
then
B(a; b+1, ...) -> B(2a+4; b, ...) B(a; [0]*k, 0, n+1, ...) -> B(0; [0]*k, a+2, n, ...) B(a; [0]*k) -> Halt(3a + 2k + 9) Start at step 8178: B(2, [1]*12)
High level rule
Let
then
Bound
Let
then
and
and so this TM halts with a sigma score of
Note that and so for ,
and so this TM halts with sigma score .
This bound is pretty tight: .