BB(2,4): Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
(Extend list of longest running TMs)
m (Fixed link to "Champions")
 
(18 intermediate revisions by 4 users not shown)
Line 1: Line 1:
BB(2,4) was unofficially found to be 3,932,964 on April 10, 2023 by the bbchallenge project, when deciders made for solving BB(5) eliminated the last BB(2,4) holdouts. The champion machine M, with S(M) = 3,932,964 and Σ(M) = 2,050, was found by Terry and [[User:sligocki|Shawn Ligocki]] in February 2005.
The 2-state, 4-symbol Busy Beaver problem, '''BB(2,4)''', obtained a lower bound of BB(2,4) 3,932,964 when the winner was found in February 2005.  


Work formalizing this result is ongoing.
On August 22, 2024, BB(2,4) = 3,932,964 was officially confirmed by the [[bbchallenge.org]] massively collaborative research project, when a proof for the BB(2,4) case was added to [[Coq-BB5]] and successfully compiled.


== History ==
== History ==
* Brady found a steps and ones champion in 1988, establishing S(2,4) ≥ 7195 and Σ(2,4) ≥ 90.<ref>Brady A.H. (1988) The busy beaver game and the meaning of life in: The Universal Turing Machine: A Half-Century Survey, R. Herken (Ed.), Oxford University Press, 1988, 259-277.</ref>
* Brady found a steps and ones champion in 1988, establishing S(2,4) ≥ 7195 and Σ(2,4) ≥ 90.<ref>Brady A.H. (1988) The busy beaver game and the meaning of life in: The Universal Turing Machine: A Half-Century Survey, R. Herken (Ed.), Oxford University Press, 1988, 259-277.</ref>
* Terry and Shawn Ligocki found the current champion in 2005.
* [[User:tjligocki|Terry]] and [[User:sligocki|Shawn Ligocki]] found the champion in 2005 but they did not prove it was BB(2,4).


== Champion ==
== Champion ==
S(2,4) = 3,932,964 and Σ(2,4) = 2050 and both are achieved by only one champion (in [[TNF]]):
S(2,4) = 3,932,964 and Σ(2,4) = 2050 and both are achieved by only one [[Champions#4-Symbol TMs|champion]] (in [[TNF]]):
* {{TM|1RB2LA1RA1RA_1LB1LA3RB1RZ|halt}}
* {{TM|1RB2LA1RA1RA_1LB1LA3RB1RZ|halt}}


== Enumeration ==
== Top Halters ==
The top 20 longest running BB(2,4) TMs (in [[TNF-1RB]]) are:
The top 20 longest running BB(2,4) TMs (in [[TNF-1RB]]) are:
Standard Format          Steps  Σ
<pre>
1RB2LA1RA1RA_1LB1LA3RB1RZ Halt 3932964 2050
Standard Format          Status Steps  Σ
1RB3LA1LA1RA_2LA1RZ3RA3RB Halt 7195 90
1RB2LA1RA1RA_1LB1LA3RB1RZ Halt   3932964 2050
1RB3LA1LA1RA_2LA1RZ3LA3RB Halt 6445 84
1RB3LA1LA1RA_2LA1RZ3RA3RB Halt   7195   90
1RB3LA1LA1RA_2LA1RZ2RA3RB Halt 6445 84
1RB3LA1LA1RA_2LA1RZ3LA3RB Halt   6445   84
1RB2RB3LA2RA_1LA3RB1RZ1LB Halt 2351 60
1RB3LA1LA1RA_2LA1RZ2RA3RB Halt   6445   84
1RB3RA1LA2RB_2LA3LA1RZ1RA Halt 1021 53
1RB2RB3LA2RA_1LA3RB1RZ1LB Halt   2351   60
1RB3LA1RZ0RB_2LB2LA0LA0RA Halt 1001 26
1RB3RA1LA2RB_2LA3LA1RZ1RA Halt   1021   53
1RB2LA1RZ3LA_2LA2RB3RB2LB Halt 770 30
1RB3LA1RZ0RB_2LB2LA0LA0RA Halt   1001   26
1RB2LB1RZ3LA_2LA2RB3RB2LB Halt 708 29
1RB2LA1RZ3LA_2LA2RB3RB2LB Halt   770     30
1RB2LA0RB1LB_1LA3RA1RA1RZ Halt 592 24
1RB2LB1RZ3LA_2LA2RB3RB2LB Halt   708     29
1RB3LA3RA0LA_2LB1LA1RZ2RA Halt 392 20
1RB2LA0RB1LB_1LA3RA1RA1RZ Halt   592     24
1RB3LA1LA1RA_2LA1RZ2RB3RB Halt 376 21
1RB3LA3RA0LA_2LB1LA1RZ2RA Halt   392     20
1RB3LA1LA1RA_2LA1RZ0LA3RB Halt 376 21
1RB3LA1LA1RA_2LA1RZ2RB3RB Halt   376     21
1RB3LA3RB0LA_2LA1RZ1LB3RA Halt 374 22
1RB3LA1LA1RA_2LA1RZ0LA3RB Halt   376     21
1RB1RA1LB0RA_2LA3RB2RA1RZ Halt 335 18
1RB3LA3RB0LA_2LA1RZ1LB3RA Halt   374     22
1RB2LA3LA1LB_2LA1RZ2RB0RA Halt 292 18
1RB1RA1LB0RA_2LA3RB2RA1RZ Halt   335     18
1RB0RB1RZ0LA_2LA3RA3LA1LB Halt 289 13
1RB2LA3LA1LB_2LA1RZ2RB0RA Halt   292     18
1RB1LA1RZ0LB_2LA3RB1RB2RA Halt 283 18
1RB0RB1RZ0LA_2LA3RA3LA1LB Halt   289     13
1RB3LA3RA0LA_2LB1LA1RZ3RA Halt 266 19
1RB1LA1RZ0LB_2LA3RB1RB2RA Halt   283     18
1RB2RB1RZ1LB_2LA2LB3RB0RB Halt 241 15
1RB3LA3RA0LA_2LB1LA1RZ3RA Halt   266     19
1RB2RB1RZ1LB_2LA2LB3RB0RB Halt   241     15
</pre>


For the top 100 halting BB(2,4) TMs, see: https://github.com/sligocki/busy-beaver/blob/main/Machines/bb/2x4.txt
For the top 100 halting BB(2,4) TMs, see: https://github.com/sligocki/busy-beaver/blob/main/Machines/bb/2x4.txt
== References ==
<references/>
[[Category:BB Domains]]

Latest revision as of 11:04, 11 August 2025

The 2-state, 4-symbol Busy Beaver problem, BB(2,4), obtained a lower bound of BB(2,4) ≥ 3,932,964 when the winner was found in February 2005.

On August 22, 2024, BB(2,4) = 3,932,964 was officially confirmed by the bbchallenge.org massively collaborative research project, when a proof for the BB(2,4) case was added to Coq-BB5 and successfully compiled.

History

  • Brady found a steps and ones champion in 1988, establishing S(2,4) ≥ 7195 and Σ(2,4) ≥ 90.[1]
  • Terry and Shawn Ligocki found the champion in 2005 but they did not prove it was BB(2,4).

Champion

S(2,4) = 3,932,964 and Σ(2,4) = 2050 and both are achieved by only one champion (in TNF):

  • 1RB2LA1RA1RA_1LB1LA3RB1RZ (bbch)

Top Halters

The top 20 longest running BB(2,4) TMs (in TNF-1RB) are:

Standard Format           Status Steps   Σ
1RB2LA1RA1RA_1LB1LA3RB1RZ Halt   3932964 2050
1RB3LA1LA1RA_2LA1RZ3RA3RB Halt   7195    90
1RB3LA1LA1RA_2LA1RZ3LA3RB Halt   6445    84
1RB3LA1LA1RA_2LA1RZ2RA3RB Halt   6445    84
1RB2RB3LA2RA_1LA3RB1RZ1LB Halt   2351    60
1RB3RA1LA2RB_2LA3LA1RZ1RA Halt   1021    53
1RB3LA1RZ0RB_2LB2LA0LA0RA Halt   1001    26
1RB2LA1RZ3LA_2LA2RB3RB2LB Halt   770     30
1RB2LB1RZ3LA_2LA2RB3RB2LB Halt   708     29
1RB2LA0RB1LB_1LA3RA1RA1RZ Halt   592     24
1RB3LA3RA0LA_2LB1LA1RZ2RA Halt   392     20
1RB3LA1LA1RA_2LA1RZ2RB3RB Halt   376     21
1RB3LA1LA1RA_2LA1RZ0LA3RB Halt   376     21
1RB3LA3RB0LA_2LA1RZ1LB3RA Halt   374     22
1RB1RA1LB0RA_2LA3RB2RA1RZ Halt   335     18
1RB2LA3LA1LB_2LA1RZ2RB0RA Halt   292     18
1RB0RB1RZ0LA_2LA3RA3LA1LB Halt   289     13
1RB1LA1RZ0LB_2LA3RB1RB2RA Halt   283     18
1RB3LA3RA0LA_2LB1LA1RZ3RA Halt   266     19
1RB2RB1RZ1LB_2LA2LB3RB0RB Halt   241     15

For the top 100 halting BB(2,4) TMs, see: https://github.com/sligocki/busy-beaver/blob/main/Machines/bb/2x4.txt

References

  1. Brady A.H. (1988) The busy beaver game and the meaning of life in: The Universal Turing Machine: A Half-Century Survey, R. Herken (Ed.), Oxford University Press, 1988, 259-277.