1RB1RE 1LC1LD ---1LA 1LB1LE 0RF0RA 1LD1RF: Difference between revisions
Jump to navigation
Jump to search
mNo edit summary |
(add unsolved problem) |
||
Line 1: | Line 1: | ||
{{machine|1RB1RE_1LC1LD_---1LA_1LB1LE_0RF0RA_1LD1RF}} | {{machine|1RB1RE_1LC1LD_---1LA_1LB1LE_0RF0RA_1LD1RF}}{{unsolved|Does this TM halt? If so, how many steps does it take to halt?}} | ||
{{TM|1RB1RE_1LC1LD_---1LA_1LB1LE_0RF0RA_1LD1RF}} is a [[probviously]] halting tetrational [[BB(6)]] [[Cryptid]] found by Racheline on 29 July 2024 ([https://discord.com/channels/960643023006490684/1239205785913790465/1267538388530233404 Discord link]). | {{TM|1RB1RE_1LC1LD_---1LA_1LB1LE_0RF0RA_1LD1RF}} is a [[probviously]] halting tetrational [[BB(6)]] [[Cryptid]] found by Racheline on 29 July 2024 ([https://discord.com/channels/960643023006490684/1239205785913790465/1267538388530233404 Discord link]). | ||
Latest revision as of 01:37, 9 July 2025
1RB1RE_1LC1LD_---1LA_1LB1LE_0RF0RA_1LD1RF
(bbch) is a probviously halting tetrational BB(6) Cryptid found by Racheline on 29 July 2024 (Discord link).
1RB1RE_1LC1LD_---1LA_1LB1LE_0RF0RA_1LD1RF A(m, n+9) = 0^inf 1^m (01)^n 0 A> 0^inf rules: A(m+4, 2n) -> A(m, 3n) A(m+4, 2n+1) -> A(m, 3n+1) A(0, 2n) -> halt A(0, 2n+1) -> A(6n-23, 10) A(1, 2n) -> A(6n-23, 10) A(1, 2n+1) -> halt A(2, n) -> halt A(3, 2n) -> A(6n-20, 10) A(3, 2n+1) -> A(6n-18, 10) start from A(1, 10) B(m) = A(m, 10) B(4m) -> B(3 * HydraMap^m(10) - 26) if HydraMap^m(10) is odd B(4m+1) -> B(3 * HydraMap^m(10) - 23) if HydraMap^m(10) is even B(4m-1) -> B(2 * HydraMap^m(10) - 20) in all other cases, halt start from B(1) iterating HydraMap on 10: 10, 15, 22, 33, 49, 73, 109, 163, 244, 366, 549, 823, 1234, ... B(1) -> B(3*10-23) = B(7) -> B(2*22-20) = B(24) -> B(3*109-26) = B(301) -> B(3*153090419621086-23) = B(459271258863235) -> B(2*HydraMap^114817814715809(10)-20)