1RB0LC 0LC0RF 1RD1LC 0RA1LE ---0LD 1LF1LA: Difference between revisions
Jump to navigation
Jump to search
(Created page with "{{machine|1RB0LC_0LC0RF_1RD1LC_0RA1LE_---0LD_1LF1LA}} {{TM|1RB0LC_0LC0RF_1RD1LC_0RA1LE_---0LD_1LF1LA}} is a probviously halting tetrational BB(6) Cryptid found by Racheline on 30 July 2024 ([https://discord.com/channels/960643023006490684/1239205785913790465/1267778444280725514 Discord link]). <pre> 1RB0LC_0LC0RF_1RD1LC_0RA1LE_---0LD_1LF1LA A(n,m) = 0^inf 1^n 0 F> (01)^m 0^inf A(2n,m) -> A(3n+6,m-3) A(2n+1,m) -> A(3n+4,m-1) A(2n,2) -> A(3n+5,0) A(2n+1,0) ->...") |
(add unsolved problem) |
||
Line 1: | Line 1: | ||
{{machine|1RB0LC_0LC0RF_1RD1LC_0RA1LE_---0LD_1LF1LA}} | {{machine|1RB0LC_0LC0RF_1RD1LC_0RA1LE_---0LD_1LF1LA}}{{unsolved|Does this TM halt? If so, how many steps does it take to halt?}} | ||
{{TM|1RB0LC_0LC0RF_1RD1LC_0RA1LE_---0LD_1LF1LA}} is a [[probviously]] halting tetrational [[BB(6)]] [[Cryptid]] found by Racheline on 30 July 2024 ([https://discord.com/channels/960643023006490684/1239205785913790465/1267778444280725514 Discord link]). | {{TM|1RB0LC_0LC0RF_1RD1LC_0RA1LE_---0LD_1LF1LA}} is a [[probviously]] halting tetrational [[BB(6)]] [[Cryptid]] found by Racheline on 30 July 2024 ([https://discord.com/channels/960643023006490684/1239205785913790465/1267778444280725514 Discord link]). | ||
Latest revision as of 01:11, 9 July 2025
1RB0LC_0LC0RF_1RD1LC_0RA1LE_---0LD_1LF1LA
(bbch) is a probviously halting tetrational BB(6) Cryptid found by Racheline on 30 July 2024 (Discord link).
1RB0LC_0LC0RF_1RD1LC_0RA1LE_---0LD_1LF1LA A(n,m) = 0^inf 1^n 0 F> (01)^m 0^inf A(2n,m) -> A(3n+6,m-3) A(2n+1,m) -> A(3n+4,m-1) A(2n,2) -> A(3n+5,0) A(2n+1,0) -> A(3n+3,0) A(4n,0) -> halt A(4n+2,0) -> A(1,3n+2) A(4n,1) -> A(1,3n+1) A(4n+2,1) -> halt start from A(1,0) (1,0) -> (3,0) -> (6,0) -> (1,5) -> (4,4) -> (12,1) -> (1,10) -> (4,9) -> (12,6) -> (24,3) -> (42,0) -> (1,32) -> ... -> (42,22) -> (69,19) -> (106,18) -> (165,15) -> (250,14) -> (381,11) -> (574,10) -> (867,7) -> (1303,6) -> (1957,5) -> (2938,4) -> (4413,1) -> (6622,0) -> (1,4967) -> ... -> (1,14368104968158922075826107897180157472284778921629891726072102154787953803159846292172983561900377711849897006427931013549455392544971918174039397292047183836725754592289319138760681981985121998538399879663080278192689282242683391905756667361944058503279816320482221006589444678672938373180284730537542284274407184691680540140302771101361561704028370606196721983814161423625115635349884218310358225536631663390134886195173210534077626946216488582) and then we need about 2^1481.1028 iterations of this not-quite-hydra map to see the next jump