Collatz-like: Difference between revisions
ISquillante (talk | contribs) m (→Definitions) |
(...) |
||
(8 intermediate revisions by 3 users not shown) | |||
Line 7: | Line 7: | ||
Many [[Busy Beaver Champions]] have '''Collatz-like behavior''', meaning that their behavior can be concisely described via the iterated values of a Collatz-like function. | Many [[Busy Beaver Champions]] have '''Collatz-like behavior''', meaning that their behavior can be concisely described via the iterated values of a Collatz-like function. | ||
== Examples == | == Examples == | ||
=== | === 5-state busy beaver winner === | ||
Consider the [[5-state busy beaver winner | Consider the [[5-state busy beaver winner]] and the generalized configuration: | ||
<math display="block">M(n) = 0^\infty \; \textrm{<A} \; 1^n \; 0^\infty</math>Pascal Michel showed that: | <math display="block">M(n) = 0^\infty \; \textrm{<A} \; 1^n \; 0^\infty</math>Pascal Michel showed that: | ||
Line 55: | Line 25: | ||
=== Hydra === | === Hydra === | ||
Consider [[Hydra]] (a [[ | Consider [[Hydra]] (a [[Cryptid]]) and the generalized configuration: | ||
<math display="block">C(a, b) = 0^\infty \; \textrm{ < | <math display="block">C(a, b) = 0^\infty\;\textrm{<A}\;2\;0^{3(a-2)} \; 3^b \; 2 \; 0^\infty</math> | ||
Daniel Yuan showed that:<math display="block">\begin{array}{l} | Daniel Yuan showed that:<math display="block">\begin{array}{l} | ||
\\ | \\ | ||
0^\infty \; \textrm{A>} \; 0^\infty & & \xrightarrow{ | 0^\infty \; \textrm{A>} \; 0^\infty & & \xrightarrow{20} & C(3, 0) \\ | ||
C(2n, & 0) & \to & \text{Halt}(9n-6) \\ | C(2n, & 0) & \to & \text{Halt}(9n-6) \\ | ||
C(2n, & b+1) & \to & C(3n, & b) \\ | C(2n, & b+1) & \to & C(3n, & b) \\ | ||
Line 68: | Line 38: | ||
Where <math>\textrm{Halt}(n)</math> is a halting configuration with <math>n</math> non-zero symbols on the tape. | Where <math>\textrm{Halt}(n)</math> is a halting configuration with <math>n</math> non-zero symbols on the tape. | ||
Starting from | Starting from <math>C(3, 0)</math>, this simulates a pseudo-random walk along the <math>b</math> parameter, increasing it by 2 every time <math>a</math> is odd, decreasing by 1 every time it's even. Deciding whether or not Hydra halts requires determining whether through the process of applying the Collatz-like function | ||
<math display="block">\begin{array}{l} | |||
H(2n) & = & 3n &\text{(even transition)} \\ | |||
\end{array}</math> | H(2n+1) & = & 3n+1&\text{(odd transition)} \\ | ||
\end{array}</math> | |||
to 3 recursively, there eventually comes a point where the amount of even transitions applied is more than twice the amount of odd transitions applied.<ref>Shawn Ligocki. [https://www.sligocki.com/2024/05/10/bb-2-5-is-hard.html BB(2, 5) is Hard (Hydra)]. 10 May 2024.</ref> The first few transitions are displayed below: | |||
<math display="block">\begin{array}{l} | <math display="block">\begin{array}{l} | ||
\vphantom{\frac{\frac{0}{.}}{.}}3 \xrightarrow{O} 4 \xrightarrow{E} 6\xrightarrow{E} 9 \xrightarrow{O} 13 \xrightarrow{O} 19 \xrightarrow{O} 28 \xrightarrow{E} 42 \xrightarrow{E} 63\xrightarrow{O} \cdots \\ | |||
\end{array} | \end{array} | ||
</math> | </math> | ||
=== Exponential Collatz === | |||
Consider the machine {{TM|1RB0LD_1RC0RF_1LC1LA_0LE1RZ_1LF0RB_0RC0RE|halt}}, discovered by Pavel Kropitz in May 2022, and the general configuration:<math display="block">K(n) = 0^\infty \; 1 \; 0^n \; 11 \; 0^5 \; \textrm{C>} \; 0^\infty</math>Shawn Ligocki showed that: | |||
=== | |||
Consider the | |||
<math display="block">\begin{array}{l} | <math display="block">\begin{array}{l} | ||
\\ | \\ | ||
0^\infty \; \textrm{A>} \; 0^\infty & \xrightarrow{45} & K(5) \\ | 0^\infty \; \textrm{A>} \; 0^\infty & \xrightarrow{45} & K(5) \\ | ||
K(4k) & \to & \text{Halt}(\frac{3^{k+3} - 11}{2}) \\ | K(4k) & \to & \text{Halt}\Bigl(\frac{3^{k+3} - 11}{2}\Bigr) \\ | ||
K(4k+1) & \to & K(\frac{3^{k+3} - 11}{2}) \\ | K(4k+1) & \to & K\Bigl(\frac{3^{k+3} - 11}{2}\Bigr) \\ | ||
K(4k+2) & \to & K(\frac{3^{k+3} - 11}{2}) \\ | K(4k+2) & \to & K\Bigl(\frac{3^{k+3} - 11}{2}\Bigr) \\ | ||
K(4k+3) & \to & K(\frac{3^{k+3} + 1}{2}) \\ | K(4k+3) & \to & K\Bigl(\frac{3^{k+3} + 1}{2}\Bigr) \\ | ||
\end{array}</math> | \end{array}</math> | ||
Demonstrating Collatz-like behavior with exponential piecewise component functions. | |||
Starting from config <math>K(5)</math>, these rules iterate 15 times before reaching the halt config leaving over <math>10 \uparrow\uparrow 15</math> non-zero symbols on the tape.<ref>Shawn Ligocki. [https://www.sligocki.com/2022/06/21/bb-6-2-t15.html BB(6, 2) > 10↑↑15]. 21 Jun 2022.</ref> | Starting from config <math>K(5)</math>, these rules iterate 15 times before reaching the halt config leaving over <math>10 \uparrow\uparrow 15</math> non-zero symbols on the tape.<ref>Shawn Ligocki. [https://www.sligocki.com/2022/06/21/bb-6-2-t15.html BB(6, 2) > 10↑↑15]. 21 Jun 2022.</ref> | ||
== References == | == References == | ||
<references /> | <references /> | ||
[[Category:Zoology]] | [[Category:Zoology]] |
Latest revision as of 11:18, 17 June 2025
A Collatz-like function is a partial function defined piecewise depending on the remainder of an input modulo some number. The canonical example is the original Collatz function:
A Collatz-like problem is a question about the behavior of iterating a Collatz-like function. Collatz-like problems are famously difficult.
Many Busy Beaver Champions have Collatz-like behavior, meaning that their behavior can be concisely described via the iterated values of a Collatz-like function.
Examples
5-state busy beaver winner
Consider the 5-state busy beaver winner and the generalized configuration:
Starting on a blank tape , these rules iterate 15 times before reaching the halt config.[1]
Hydra
Consider Hydra (a Cryptid) and the generalized configuration:
Where is a halting configuration with non-zero symbols on the tape.
Starting from , this simulates a pseudo-random walk along the parameter, increasing it by 2 every time is odd, decreasing by 1 every time it's even. Deciding whether or not Hydra halts requires determining whether through the process of applying the Collatz-like function
Exponential Collatz
Consider the machine 1RB0LD_1RC0RF_1LC1LA_0LE1RZ_1LF0RB_0RC0RE
(bbch), discovered by Pavel Kropitz in May 2022, and the general configuration:
Demonstrating Collatz-like behavior with exponential piecewise component functions.
Starting from config , these rules iterate 15 times before reaching the halt config leaving over non-zero symbols on the tape.[3]
References
- ↑ Pascal Michel's Analysis of the BB(5, 2) Champion
- ↑ Shawn Ligocki. BB(2, 5) is Hard (Hydra). 10 May 2024.
- ↑ Shawn Ligocki. BB(6, 2) > 10↑↑15. 21 Jun 2022.