Collatz-like: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
(...)
 
(10 intermediate revisions by 3 users not shown)
Line 7: Line 7:


Many [[Busy Beaver Champions]] have '''Collatz-like behavior''', meaning that their behavior can be concisely described via the iterated values of a Collatz-like function.
Many [[Busy Beaver Champions]] have '''Collatz-like behavior''', meaning that their behavior can be concisely described via the iterated values of a Collatz-like function.
== Definitions ==
An <math>n</math>-ary '''Collatz-like function''' is a partial function <math>f:\mathbb{Z}^n\hookrightarrow\mathbb{Z}^n</math> of the form
<math display="block">
f(t_1,t_2,\dots,t_n)=
\begin{cases}
    (P_1(t_1),P_2(t_2),\dots,P_n(t_n)) & t_1\equiv 0\mod z\\
    (P_{n+1}(t_1),P_{n+2}(t_2),\dots,P_{2n}(t_n)) & t_1\equiv 1\mod z\\
    \quad\quad\quad\quad\quad\quad\quad\quad\vdots & \quad\quad\quad\vdots\\
    (P_{nz-n+1}(t_1),\dots,P_{nz}(t_n)) & t_1\equiv -1\mod z,
\end{cases} </math>
where <math>z</math> is a positive integer and <math>P_1,P_2,\dots,P_{nz}</math> are (not necessarily distinct) polynomials with rational coefficients. This definition is often restricted to those polynomials of degree one.
For any given <math>n</math>-ary Collatz-like function <math>g</math> and some two indexed series of subsets <math>\{S_1,S_2,\dots,S_n\},\{T_1,T_2,\dots,T_n\}</math> of the integers, we can write the well-formed formula
<math display="block">
\forall \sigma \in \prod_{i=1}^n S_i\exists\tau\in\prod_{i=1}^nT_i\exists x.g^{\circ x}(\sigma)=\tau
</math>
where <math>g^{\circ x}(\sigma)</math> is the <math>x</math>-th iterate of <math>g</math> on <math>\sigma</math>. Proving or disproving a formula of the above form is a '''Collatz-like problem.'''
Many [[cryptids]] exhibit '''Collatz-like behavior''', meaning that their behavior can be concisely described via the iterated values of a Collatz-like function. For example, [[Antihydra]]'s halting status is directly related to the truth value of <math>\exists x\in\mathbb{N}\times\{-1\}\exists n.A^{\circ n}(8,0)=x</math> where
<math display="block">
A(x,y)=
\begin{cases}
    (\frac{3}{2}x,y+2) & x\equiv 0\mod 2\\
    (\frac{3}{2}x-\frac{1}{2},y-1) & x\equiv 1\mod 2.
\end{cases}</math>


== Examples ==
== Examples ==


=== BB(5,2) Champion ===
=== 5-state busy beaver winner ===
Consider the [[5-state busy beaver winner|BB(5,2) Champion]] and the generalized configuration:
Consider the [[5-state busy beaver winner]] and the generalized configuration:


<math display="block">M(n) = 0^\infty \; \textrm{<A} \; 1^n \; 0^\infty</math>Pascal Michel showed that:
<math display="block">M(n) = 0^\infty \; \textrm{<A} \; 1^n \; 0^\infty</math>Pascal Michel showed that:
Line 55: Line 25:


=== Hydra ===
=== Hydra ===
Consider [[Hydra]] (a [[Cryptids|Cryptid]]) and the generalized configuration:
Consider [[Hydra]] (a [[Cryptid]]) and the generalized configuration:


<math display="block">C(a, b) = 0^\infty \; \textrm{ <B } \; 0^{3(a-2)} \; 3^b \; 2 \; 0^\infty</math>
<math display="block">C(a, b) = 0^\infty\;\textrm{<A}\;2\;0^{3(a-2)} \; 3^b \; 2 \; 0^\infty</math>
Daniel Yuan showed that:<math display="block">\begin{array}{l}
Daniel Yuan showed that:<math display="block">\begin{array}{l}
   \\
   \\
   0^\infty \; \textrm{A>} \; 0^\infty & & \xrightarrow{19} & C(3, 0) \\
   0^\infty \; \textrm{A>} \; 0^\infty & & \xrightarrow{20} & C(3, 0) \\
   C(2n,  & 0)  & \to & \text{Halt}(9n-6) \\
   C(2n,  & 0)  & \to & \text{Halt}(9n-6) \\
   C(2n,  & b+1) & \to & C(3n,  & b) \\
   C(2n,  & b+1) & \to & C(3n,  & b) \\
Line 68: Line 38:
Where <math>\textrm{Halt}(n)</math> is a halting configuration with <math>n</math> non-zero symbols on the tape.
Where <math>\textrm{Halt}(n)</math> is a halting configuration with <math>n</math> non-zero symbols on the tape.


Starting from config <math>C(3, 0)</math> this simulates a pseudo-random walk along the <math>b</math> parameter, increasing it by 2 every time <math>a</math> is odd, decreasing by 1 every time it's even. Deciding whether or not Hydra halts requires being able to prove a detailed question about the trajectory of the Collatz-like function<math display="block">\begin{array}{l}
Starting from <math>C(3, 0)</math>, this simulates a pseudo-random walk along the <math>b</math> parameter, increasing it by 2 every time <math>a</math> is odd, decreasing by 1 every time it's even. Deciding whether or not Hydra halts requires determining whether through the process of applying the Collatz-like function
   h(2n)  & = & 3n   \\
<math display="block">\begin{array}{l}
   h(2n+1) & = & 3n+1 \\
   H(2n)  & = & 3n &\text{(even transition)} \\
\end{array}</math>starting from 3:
   H(2n+1) & = & 3n+1&\text{(odd transition)} \\
 
\end{array}</math>
to 3 recursively, there eventually comes a point where the amount of even transitions applied is more than twice the amount of odd transitions applied.<ref>Shawn Ligocki. [https://www.sligocki.com/2024/05/10/bb-2-5-is-hard.html BB(2, 5) is Hard (Hydra)]. 10 May 2024.</ref> The first few transitions are displayed below:
<math display="block">\begin{array}{l}
<math display="block">\begin{array}{l}
  \\
\vphantom{\frac{\frac{0}{.}}{.}}3 \xrightarrow{O} 4 \xrightarrow{E} 6\xrightarrow{E} 9 \xrightarrow{O} 13 \xrightarrow{O} 19 \xrightarrow{O} 28 \xrightarrow{E} 42 \xrightarrow{E} 63\xrightarrow{O} \cdots \\
  3 \xrightarrow{O} 4 \xrightarrow{E} 6\xrightarrow{E} 9 \xrightarrow{O} 13 \xrightarrow{O} 19 \xrightarrow{O} 28 \xrightarrow{E} 42 \xrightarrow{E} 63 \cdots \\
\end{array}
\end{array}
</math>
</math>
 
=== Exponential Collatz ===
Specifically, will it ever reach a point where the cumulative number of <code>E</code> (even transitions) applied is greater than twice the number of <code>O</code> (odd transitions) applied?<ref>Shawn Ligocki. [https://www.sligocki.com/2024/05/10/bb-2-5-is-hard.html BB(2, 5) is Hard (Hydra)]. 10 May 2024.</ref>
Consider the machine {{TM|1RB0LD_1RC0RF_1LC1LA_0LE1RZ_1LF0RB_0RC0RE|halt}}, discovered by Pavel Kropitz in May 2022, and the general configuration:<math display="block">K(n) = 0^\infty \; 1 \; 0^n \; 11 \; 0^5 \; \textrm{C>} \; 0^\infty</math>Shawn Ligocki showed that:
 
=== Tetration Machine ===
Consider the current [[1RB0LD_1RC0RF_1LC1LA_0LE1RZ_1LF0RB_0RC0RE|BB(6,2) Champion]] (discovered by Pavel Kropitz in May 2022) and consider the general configuration:<math display="block">K(n) = 0^\infty \; 1 \; 0^n \; 11 \; 0^5 \; \textrm{C>} \; 0^\infty</math>Shawn Ligocki showed that:
<math display="block">\begin{array}{l}
<math display="block">\begin{array}{l}
   \\
   \\
   0^\infty \; \textrm{A>} \; 0^\infty & \xrightarrow{45} & K(5) \\
   0^\infty \; \textrm{A>} \; 0^\infty & \xrightarrow{45} & K(5) \\
   K(4k)  & \to & \text{Halt}(\frac{3^{k+3} - 11}{2}) \\
   K(4k)  & \to & \text{Halt}\Bigl(\frac{3^{k+3} - 11}{2}\Bigr) \\
   K(4k+1) & \to & K(\frac{3^{k+3} - 11}{2}) \\
   K(4k+1) & \to & K\Bigl(\frac{3^{k+3} - 11}{2}\Bigr) \\
   K(4k+2) & \to & K(\frac{3^{k+3} - 11}{2}) \\
   K(4k+2) & \to & K\Bigl(\frac{3^{k+3} - 11}{2}\Bigr) \\
   K(4k+3) & \to & K(\frac{3^{k+3} +  1}{2}) \\
   K(4k+3) & \to & K\Bigl(\frac{3^{k+3} +  1}{2}\Bigr) \\
\end{array}</math>
\end{array}</math>
Demonstrating Collatz-like behavior with exponential piecewise component functions.


Starting from config <math>K(5)</math>, these rules iterate 15 times before reaching the halt config leaving over <math>10 \uparrow\uparrow 15</math> non-zero symbols on the tape.<ref>Shawn Ligocki. [https://www.sligocki.com/2022/06/21/bb-6-2-t15.html BB(6, 2) > 10↑↑15]. 21 Jun 2022.</ref>
Starting from config <math>K(5)</math>, these rules iterate 15 times before reaching the halt config leaving over <math>10 \uparrow\uparrow 15</math> non-zero symbols on the tape.<ref>Shawn Ligocki. [https://www.sligocki.com/2022/06/21/bb-6-2-t15.html BB(6, 2) > 10↑↑15]. 21 Jun 2022.</ref>
== References ==
== References ==
<references />
<references />
[[Category:Zoology]]
[[Category:Zoology]]

Latest revision as of 11:18, 17 June 2025

A Collatz-like function is a partial function defined piecewise depending on the remainder of an input modulo some number. The canonical example is the original Collatz function:

A Collatz-like problem is a question about the behavior of iterating a Collatz-like function. Collatz-like problems are famously difficult.

Many Busy Beaver Champions have Collatz-like behavior, meaning that their behavior can be concisely described via the iterated values of a Collatz-like function.

Examples

5-state busy beaver winner

Consider the 5-state busy beaver winner and the generalized configuration:

Pascal Michel showed that:

Starting on a blank tape , these rules iterate 15 times before reaching the halt config.[1]

Hydra

Consider Hydra (a Cryptid) and the generalized configuration:

Daniel Yuan showed that:

Where is a halting configuration with non-zero symbols on the tape.

Starting from , this simulates a pseudo-random walk along the parameter, increasing it by 2 every time is odd, decreasing by 1 every time it's even. Deciding whether or not Hydra halts requires determining whether through the process of applying the Collatz-like function

to 3 recursively, there eventually comes a point where the amount of even transitions applied is more than twice the amount of odd transitions applied.[2] The first few transitions are displayed below:

Exponential Collatz

Consider the machine 1RB0LD_1RC0RF_1LC1LA_0LE1RZ_1LF0RB_0RC0RE (bbch), discovered by Pavel Kropitz in May 2022, and the general configuration:

Shawn Ligocki showed that:

Demonstrating Collatz-like behavior with exponential piecewise component functions.

Starting from config , these rules iterate 15 times before reaching the halt config leaving over non-zero symbols on the tape.[3]

References