Champions: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
C7X (talk | contribs)
Remove discoverer of blank column, fix typo
MrSolis (talk | contribs)
...
Line 37: Line 37:
|-
|-
|[[BB(6)]]
|[[BB(6)]]
|<math> > 10 \uparrow\uparrow 15 </math>
|<math> > 10\uparrow\uparrow11010000 </math>
|{{TM|1RB0LD_1RC0RF_1LC1LA_0LE1RZ_1LF0RB_0RC0RE|halt}}
|{{TM|1RB1LC_1LA1RE_0RD0LA_1RZ1LB_1LD0RF_0RD1RB|halt}}
|Pavel Kropitz in 2022
|[https://discord.com/channels/960643023006490684/1384195691529633896/1384195691529633896 mxdys in 2025]
|[https://www.sligocki.com/2022/06/21/bb-6-2-t15.html Analysis by Shawn Ligocki]
|See mxdys's analysis on the TM page
|-
|-
|[[BB(7)]]
|[[BB(7)]]
Line 237: Line 237:
|
|
|}
|}
== References ==
<references />

Revision as of 10:37, 17 June 2025

Busy Beaver Champions are the current record holding Turing machines who maximize a Busy Beaver function. In this article we focus specifically on the longest running TMs. Some have been proven to be the longest running of all (and so are the ultimate champion) while others are only current champions and may be usurped in the future. For smaller domains, Pascal Michel's website is the canonical source for Busy Beaver champions and the History of Previous Champions.

2-Symbol TMs

Rows are blank if no champion has been found which surpasses a smaller size problem. Take also note that the fx(n) used in the lowerbounds represent the Fast-Growing Hierarchy. Note that most champions above 6 states are self-reported and have not been independently verified.

Runtime Champions Discovered By Verification
BB(2) 6 1RB1LB_1LA1RZ (bbch) 1RB0LB_1LA1RZ (bbch) 1RB1RZ_1LB1LA (bbch) 1RB1RZ_0LB1LA (bbch) 0RB1RZ_1LA1RB (bbch) Tibor Radó Direct Simulation
BB(3) 21 1RB1RZ_1LB0RC_1LC1LA (bbch) Proven by Shen Lin Direct Simulation
BB(4) 107 1RB1LB_1LA0LC_1RZ1LD_1RD0RA (bbch) Allen Brady Direct Simulation
BB(5) 47176870 1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA (bbch) Heiner Marxen & Jürgen Buntrock in 1989 Direct Simulation
BB(6) >1011010000 1RB1LC_1LA1RE_0RD0LA_1RZ1LB_1LD0RF_0RD1RB (bbch) mxdys in 2025 See mxdys's analysis on the TM page
BB(7) >2112113 1RB0RA_1LC1LF_1RD0LB_1RA1LE_1RZ0LC_1RG1LD_0RG0RF (bbch) Pavel Kropitz in 2025 Analyzed by Shawn Ligocki (see TM page)
BB(8)
BB(9) >fω(f9(2)) 1RB1RA_0LC0LF_0RD1LC_1RA1RG_1RZ0RA_1LB1LF_1LH1RE_0LI1LH_1LB0LH (bbch) Jacobzheng in 2024
BB(10) >fω2(25) 1RB1RA_0LC0LF_0RD1LC_1RA1RG_1RZ0RA_1LB1LF_1LH1RE_0LI1LH_0LF0LJ_1LH0LJ (bbch) Racheline in 2024
BB(11) >fω2(212)>fω2(f3(9)) 1LH1LA_1LI1RG_0RD1LC_0RF1RE_1LJ0RF_1RB1RF_0LC1LH_0LC0LA_1LK1LJ_1RZ0LI_0LD1LE (bbch) Racheline in 2024
BB(12) >fω4(243)>fω4(f4(2)) 0LJ0RF_1LH1RC_0LD0LG_0RE1LD_1RF1RA_1RB1RF_1LC1LG_1LL1LI_1LK0LH_1RH1LJ_1RZ1LA_1RF1LL (bbch) Racheline in 2024
BB(13)
BB(14) >fω+1(65536)>g64 1LH1LA_1LI1RG_0RD1LC_0RF1RE_1LJ0RF_1RB1RF_0LC1LH_0LC0LA_1LK1LJ_1RL0LI_0LL1LE_1LM1RZ_0LN1LF_0LJ--- (bbch) Racheline in 2024
BB(15)
BB(16) >fω+1(229) Daniel Nagaj in 2021 Analysis by Shawn Ligocki
BB(17) >fω+1(fω(60)) User:Jacobzheng/BB(17) Jacobzheng in 2024
BB(18) >fω+1(fω2(60)) User:Jacobzheng/BB(18) Jacobzheng in 2024
BB(19) >fω+13(fω(60)) User:Jacobzheng/BB(19) Jacobzheng in 2024
BB(20) >fω+22(21) Racheline in 2024
BB(21) >fω22(4341) Racheline in 2024
BB(40) >fωω(75500) User:Jacobzheng/BB(40) Jacobzheng in 2024
BB(41) >fωω4(32) User:Jacobzheng/BB(41) Jacobzheng in 2024
BB(51) >fε0+1(8) Racheline in 2024

3-Symbol TMs

Runtime Champions Discovered By Verification
BB(2,3) 38 1RB2LB1RZ_2LA2RB1LB (bbch)
BB(3,3) >1017 0RB2LA1RA_1LA2RB1RC_1RZ1LB1LC (bbch)
BB(4,3) >22232 0RB1RZ0RB_1RC1LB2LB_1LB2RD1LC_1RA2RC0LD (bbch)

4-Symbol TMs

Runtime Champions Discovered By Verification
BB(2,4) 3932964 1RB2LA1RA1RA_1LB1LA3RB1RZ (bbch) Shawn & Terry Ligocki in 2005 Pascal Michel, Heiner Marxen, Allen Brady
BB(3,4) >2155 1RB3LB1RZ2RA_2LC3RB1LC2RA_3RB1LB3LC2RC (bbch)

5-Symbol TMs

Runtime Champions Discovered By Verification
BB(2,5) >1010103314360 1RB3LA4RB0RB2LA_1LB2LA3LA1RA1RZ (bbch)
BB(3,5) >fω(2155)>fω2(15) 1RB3LB4LC2RA4LB_2LC3RB1LC2RA1RZ_3RB1LB3LC2RC4LC (bbch)

6-Symbol TMs

Runtime Champions Discovered By Verification
BB(2,6) >10101010115 1RB3RB5RA1LB5LA2LB_2LA2RA4RB1RZ3LB2LA (bbch)