Lucy's Moonlight: Difference between revisions
reverting to a stable version until the mess is resolved (preferably outside of this page) Tag: Manual revert |
No edit summary |
||
Line 1: | Line 1: | ||
{{machine|1RB0RD_0RC1RE_1RD0LA_1LE1LC_1RF0LD_---0RA}}{{TM|1RB0RD_0RC1RE_1RD0LA_1LE1LC_1RF0LD_---0RA}} | {{machine|1RB0RD_0RC1RE_1RD0LA_1LE1LC_1RF0LD_---0RA}}{{TM|1RB0RD_0RC1RE_1RD0LA_1LE1LC_1RF0LD_---0RA}} | ||
'''Lucy's Moonlight''' is a | '''Lucy's Moonlight''' is a [[BB(6)]] [[Cryptid]]. This [[Turing machine]] was first mentioned [https://discord.com/channels/960643023006490684/1239205785913790465/1345551751016878272 on Discord] by Racheline on 1 Mar 2025, who afterward found a set of [https://discord.com/channels/960643023006490684/1345810396136865822/1345820781363597312 high-level rules] describing it. Shawn Ligocki later discovered and [https://discord.com/channels/960643023006490684/1345810396136865822/1346329322851401868 shared] a more refined set of rules, displayed below. | ||
<div style="width: fit-content; text-align: center; margin-left: auto; margin-right: auto;"> | |||
{|class="wikitable" style="margin-left: auto; margin-right: auto;" | |||
! !!0!!1 | |||
|- | |||
!A | |||
|1RB | |||
A | |0RD | ||
|- | |||
!B | |||
|0RC | |||
|1RE | |||
|- | |||
!C | |||
|1RD | |||
|0LA | |||
|- | |||
a | !D | ||
|1LE | |||
|1LC | |||
|- | |||
!E | |||
|1RF | |||
|0LD | |||
|- | |||
!F | |||
| --- | |||
|0RA | |||
|} | |||
The transition table of Lucy's Moonlight.</div> | |||
==Analysis== | |||
Let <math>C(a,b):=0^\infty\;1011^a\;1^b\;10\;\textrm{C>}\;0^\infty</math>. Then, | |||
<math display="block">\begin{array}{|lll|}\hline C(a+1,3b)&\xrightarrow{12b^2+53b+28}&C(a,8b+6),\\C(a+2,3b+1)&\xrightarrow{12b^2+77b+103}&C(a,8b+16),\\C(a+2,3b+2)&\xrightarrow{12b^2+101b+184}&C(a,8b+22),\\C(0,3b)&\xrightarrow{12b^2+29b+52}&C(2b,8),\\C(0,3b+1)&\xrightarrow{12b^2+53b+30}&C(0,8b+5),\\C(1,3b+1)&\xrightarrow{12b^2+53b+58}&0^\infty\;1011^{2b+4}\;1\;\textrm{F>}\;0^\infty,\\C(0,3b+2)&\xrightarrow{12b^2+53b+28}&C(0,8b+5),\\C(1,3b+2)&\xrightarrow{12b^2+77b+160}&C(2b+4,8).\\\hline\end{array}</math> | |||
<div class="toccolours mw-collapsible mw-collapsed">'''Proof'''<div class="mw-collapsible-content"> | |||
Consider the partial configuration <math>P(m,n):=1^m\;10^n\;\textrm{C>}\;0^\infty</math>, which after three steps is <math>1^m\;10^n\;\textrm{<D}\;01\;0^\infty</math>. To advance, this shift rule is required: | |||
</ | <math display="block>\begin{array}{|l|}\hline10^s\;\textrm{<D}\xrightarrow{2s}\textrm{<D}\;01^s\\\hline\end{array}</math> | ||
This means we have <math>1^m\;\textrm{<D}\;01^{n+1}\;0^\infty</math> after <math>2n</math> steps, with <math>1^{m-3}\;0\;\textrm{D>}\;01^{n+2}\;0^\infty</math> after three further steps. From here, we can use the fact that <math>0\;\textrm{D>}\;01^s</math> becomes <math>100\;\textrm{D>}\;01^{s-1}</math> in four steps if <math>s\ge1</math> to get this rule: | |||
<math display="block>\begin{array}{|l|}\hline0\;\textrm{D>}\;01^s\xrightarrow{4s}10^s\;0\;\textrm{D>}\\\hline\end{array}</math> | |||
Using this rule produces <math>1^{m-3}\;10^{n+2}\;0\;\textrm{D>}\;0^\infty</math> in <math>4n+8</math> steps. With five more steps, we get <math>1^{m-3}\;10^{n+4}\;\textrm{C>}\;0^\infty</math>, which is also <math>P(m-3,n+4)</math>. To summarize: | |||
<math display="block>\begin{array}{|l|}\hline P(m,n)\xrightarrow{6n+19}P(m-3,n+4)\text{ if }m\ge3.\\\hline\end{array}</math> | |||
With <math>C(a,b)</math> we have <math>P(b,1)</math> and are able to apply this rule <math display="inline">\Big\lfloor\frac{b}{3}\Big\rfloor</math> times, with three possible scenarios: | |||
#If <math>b\equiv0\ (\operatorname{mod}3)</math>, then in <math display="inline">{\displaystyle\sum_{i=0}^{b/3-1}(6(1+4i)+19)}=\frac{4}{3}b^2+\frac{13}{3}b</math> steps we arrive at <math display="inline">P\Big(0,1+\frac{4b}{3}\Big)</math>. The matching complete configuration is <math>0^\infty\;1011^a\;10^{1+4b/3}\;\textrm{C>}\;0^\infty</math>. In <math display="inline">\frac{8}{3}b+5</math> steps we have <math>0^\infty\;1011^a\;\textrm{<D}\;01^{2+4b/3}\;0^\infty</math>, followed by <math>0^\infty\;1011^{a-1}\;11\;\textrm{B>}\;01^{3+4b/3}\;0^\infty</math> after three steps. We note that if <math>s\ge 2</math>, then <math>\textrm{B>}\;01^s</math> becomes <math>11\;\textrm{B>}\;01^{s-1}</math> in 8 steps, giving this transition rule:<math display="block>\begin{array}{|l|}\hline\textrm{B>}\;01^s \xrightarrow{8s-4}1^{2s-1}\;0\;\textrm{C>}\text{ if }s\ge1.\\\hline\end{array}</math>In this instance, the result is <math>0^\infty\;1011^{a-1}\;1^{7+8b/3}\;0\;\textrm{C>}\;0^\infty</math>, equal to <math display="inline">C\Big(a-1,\frac{8}{3}b+6\Big)</math>, after <math display="inline">\frac{32}{3}b+20</math> steps. This gives a total of <math display="inline">\frac{4}{3}b^2+\frac{53}{3}b+28</math> steps. | |||
#We can rewrite <math>C(a,b)</math> as <math>0^\infty\;1011^{a-1}\;10\;1^{b+2}\;10\;\textrm{C>}\;0^\infty</math> if <math>a\ge 1</math>. Given this, we have <math>P(b+2,1)</math>, and if <math>b\equiv1\ (\operatorname{mod}3)</math>, then in <math display="inline">\frac{4}{3}b^2+\frac{29}{3}b+14</math> steps we arrive at <math>0^\infty\;1011^{a-1}\;10^{(4b+14)/3}\;\textrm{C>}\;0^\infty</math>, which in <math display="inline">\frac{8b+37}{3}</math> steps becomes <math>0^\infty\;1011^{a-1}\;\textrm{<D}\;01^{(4b+17)/3}\;0^\infty</math>, and then <math>0^\infty\;1011^{a-2}\;11\;\textrm{B>}\;01^{(4b+20)/3}\;0^\infty</math> after three more steps. We end with <math display="inline">\frac{32b+148}{3}</math> steps to get <math>0^\infty\;1011^{a-2}\;1^{(8b+43)/3}\;0\;\textrm{C>}\;0^\infty</math>, equal to <math display="inline">C\Big(a-2,\frac{8b+40}{3}\Big)</math>. This gives a total of <math display="inline">\frac{4}{3}b^2+23b+\frac{236}{3}</math> steps. | |||
#If <math>b\equiv2\ (\operatorname{mod}3)</math> and we reuse the technique of rewriting <math>C(a,b)</math>, then in <math display="inline">\frac{4}{3}b^2+7b+\frac{17}{3}</math> steps we arrive at <math>0^\infty\;1011^{a-1}\;101\;10^{(4b+7)/3}\;\textrm{C>}\;0^\infty</math>, which in <math display="inline">\frac{8b+23}{3}</math> steps becomes <math>0^\infty\;1011^{a-1}\;101\;\textrm{<D}\;01^{(4b+10)/3}\;0^\infty</math>, and then in five steps, <math>0^\infty\;1011^{a-1}\;0\;\textrm{D>}\;01^{(4b+13)/3}\;0^\infty</math>. Adding <math display="inline">\frac{16b+52}{3}</math> steps gives us <math>0^\infty\;1011^{a-1}\;10^{(4b+13)/3}\;0\;\textrm{D>}\;0^\infty</math>, and another eight gives us <math>0^\infty\;1011^{a-1}\;10^{(4b+19)/3}\;\textrm{<D}\;01\;0^\infty</math>. After <math display="inline">\frac{8b+38}{3}</math> steps, the configuration is <math>0^\infty\;1011^{a-1}\;\textrm{<D}\;01^{(4b+22)/3}\;0^\infty</math> and after three more, <math>0^\infty\;1011^{a-2}\;11\;\textrm{B>}\;01^{(4b+25)/3}\;0^\infty</math>. We conclude with <math>0^\infty\;1011^{a-2}\;1^{(8b+53)/3}\;0\;\textrm{C>}\;0^\infty</math>, equal to <math display="inline">C\Big(a-2,\frac{8b+50}{3}\Big)</math>, after <math display="inline">\frac{32b+188}{3}</math> steps, for a total of <math display="inline">\frac{4}{3}b^2+\frac{85}{3}b+122</math> steps. | |||
The behaviour of Lucy's Moonlight changes at the boundary conditions: <math>a=0</math> or <math>a=1</math>. These changes are addressed below: | |||
#If <math>a=0</math> and <math>b\equiv0\ (\operatorname{mod}3)</math>, then starting from <math>0^\infty\;\textrm{<D}\;01^{2+4b/3}\;0^\infty</math>, we take three steps to get <math>0^\infty\;10\;\textrm{A>}\;01^{2+4b/3}\;0^\infty</math>. It is here that another shift rule must come into use:<math display="block">\begin{array}{|l|}\hline\textrm{A>}\;01^{2s}\xrightarrow{4s}1110^s\;\textrm{A>}\\\hline\end{array}</math>Upon using this shift rule, we get <math>0^\infty\;10\;1110^{1+2b/3}\;\textrm{A>}\;0^\infty</math> in <math display="inline">\frac{8}{3}b+4</math> steps. This configuration is the same as <math>0^\infty\;1011^{1+2b/3}\;10\;\textrm{A>}\;0^\infty</math>. With 40 more steps, we end at <math>0^\infty\;1011^{2b/3}\;1^9\;0\;\textrm{C>}\;0^\infty</math>, equal to <math display="inline">C\Big(\frac{2}{3}b,8\Big)</math>, for a total of <math display="inline">\frac{4}{3}b^2+\frac{29}{3}b+52</math> steps. | |||
#If <math>a=0</math> and <math>b\equiv1\ (\operatorname{mod}3)</math>, then in <math display="inline">\frac{4}{3}b^2+\frac{5}{3}b-3</math> steps we arrive at <math>0^\infty\;1\;10^{(4b-1)/3}\;\textrm{C>}\;0^\infty</math>. With <math display="inline">\frac{8b+7}{3}</math> more steps we now have <math>0^\infty\;1\;\textrm{<D}\;01^{(4b+2)/3}\;0^\infty</math>. Given five steps, the result is <math>0^\infty\;1\;\textrm{B>}\;01^{(4b+5)/3}\;0^\infty</math>, which turns into <math>0^\infty\;1^{(8b+10)/3}\;0\;\textrm{C>}\;0^\infty</math>, equal to <math display="inline">C\Big(0,\frac{8b+7}{3}\Big)</math> in <math display="inline">\frac{32b+28}{3}</math> steps for a total of <math display="inline">\frac{4}{3}b^2+15b+\frac{41}{3}</math> steps. | |||
#If <math>a=1</math> and <math>b\equiv1\ (\operatorname{mod}3)</math>, then starting from <math>0^\infty\;\textrm{<D}\;01^{(4b+17)/3}\;0^\infty</math>, we get <math>0^\infty\;10\;\textrm{A>}\;01^{(4b+17)/3}\;0^\infty</math> in three steps. Since <math>01^{(4b+17)/3}</math> and <math>01^{(4b+14)/3}\;01</math> are the same, what follows is <math>0^\infty\;1011^{(2b+7)/3}\;10\;\textrm{A>}\;01\;0^\infty</math> in <math display="inline">\frac{8b+28}{3}</math> steps before finally reaching <math>0^\infty\;1011^{(2b+10)/3}\;1\;\textrm{F>}\;0^\infty</math>, and therefore the undefined <code>F0</code> transition, in three steps. This gives a total of <math display="inline">\frac{4}{3}b^2+15b+\frac{125}{3}</math> steps. | |||
#If <math>a=0</math> and <math>b\equiv2\ (\operatorname{mod}3)</math>, then in <math display="inline">\frac{4}{3}b^2-b-\frac{10}{3}</math> steps we arrive at <math>0^\infty\;11\;10^{(4x-5)/3}\;\textrm{C>}\;0^\infty</math>. It takes a further <math display="inline">\frac{8b-1}{3}</math> steps to reach <math>0^\infty\;11\;\textrm{<D}\;01^{(4b-2)/3}\;0^\infty</math>, and adding three more gives us <math>0^\infty\;1\;\textrm{B>}\;01^{(4b+1)/3}\;0^\infty</math>. With <math display="inline">\frac{32b-4}{3}</math> more steps we end up with <math>0^\infty\;1^{(8b+2)/3}\;0\;\textrm{C>}\;0^\infty</math>, equal to <math display="inline">C\Big(0,\frac{8b-1}{3}\Big)</math>. This gives a total of <math display="inline">\frac{4}{3}b^2+\frac{37}{3}b-2</math> steps. | |||
#If <math>a=1</math> and <math>b\equiv2\ (\operatorname{mod}3)</math>, then starting from <math>0^\infty\;\textrm{<D}\;01^{(4b+22)/3}\;0^\infty</math>, we take three steps to get <math>0^\infty\;10\;\textrm{A>}\;01^{(4b+22)/3}\;0^\infty</math>, and taking <math display="inline">\frac{8b+44}{3}</math> more steps produces <math>0^\infty\;1011^{(2b+11)/3}\;10\;\textrm{A>}\;0^\infty</math>. After 40 steps, we reach <math>0^\infty\;1011^{(2b+8)/3}\;1^9\;0\;\textrm{C>}\;0^\infty</math>, which is <math display="inline">C\Big(\frac{2b+8}{3},8\Big)</math>, for a total of <math display="inline">\frac{4}{3}b^2+\frac{61}{3}b+114</math> steps. | |||
The information above can be summarized as | |||
<math display="block">C(a,b)\rightarrow\begin{cases}C\Big(a-1,\frac{8}{3}b+6\Big)&\text{if }a\ge1\text{ and }b\equiv0\pmod{3},\\C\Big(a-2,\frac{8b+40}{3}\Big)&\text{if }a\ge2\text{ and }b\equiv1\pmod{3},\\C\Big(a-2,\frac{8b+50}{3}\Big)&\text{if }a\ge2\text{ and }b\equiv2\pmod{3},\\C\Big(\frac{2}{3}b,8\Big)&\text{if }a=0\text{ and }b\equiv0\pmod{3},\\C\Big(0,\frac{8b+7}{3}\Big)&\text{if }a=0\text{ and }b\equiv1\pmod{3},\\0^\infty\;1011^{(2b+10)/3}\;1\;\textrm{F>}\;0^\infty&\text{if }a=1\text{ and }b\equiv1\pmod{3},\\C\Big(0,\frac{8b-1}{3}\Big)&\text{if }a=0\text{ and }b\equiv2\pmod{3},\\C\Big(\frac{2b+8}{3},8\Big)&\text{if }a=1\text{ and }b\equiv2\pmod{3}.\end{cases}</math> | |||
Substituting <math>b=3b+k</math>, where <math>k</math> is the remainder of <math>b</math> modulo 3, yields the final result. | |||
</div></div> | |||
These rules imply a sequence <math>G_n</math> that grows tetrationally in <math>n</math>, which Lucy's Moonlight iterates through one by one. For each <math>g\in G_n</math>, it reaches the configuration <math>C(g,8)</math> and then repeatedly applies the first three rules until meeting a configuration <math>C(g',q)</math> that satisfies the boundary conditions. If <math>g'=1</math> and <math>q</math> is congruent to 1 modulo 3, then Lucy's Moonlight will halt; otherwise, it moves on to the next term in <math>G_n</math>. | |||
</ | ==Trajectory== | ||
Starting with <math>C(0,0)</math> after two steps, Lucy's Moonlight repeatedly applies the [[Collatz-like]] rules. The first few steps are shown below: | |||
<math display="block">\begin{array}{|l|}\hline C(0,0)\xrightarrow{52}C(0,8)\xrightarrow{182}C(0,21)\xrightarrow{843}C(14,8)\xrightarrow{434}C(12,38)\xrightarrow{3124}C(10,118)\xrightarrow{21358}C(8,328)\rightarrow\cdots\\\hline\end{array}</math> | |||
From <math>C(0,0)</math>, it takes 11 rule steps to get <math>C(11292,8)</math> and 6811 more to get <math>C(G_3,8)</math>, where <math>G_3\approx 8.282\times10^{2901}</math>. Despite this rapid growth, Lucy's Moonlight appears to be [[probviously]] halting if one considers each instance of <math>C(g,8)</math> as the beginning of an independent round of a luck-based game, detailed below: | |||
#A large number <math>n</math> is generated randomly. | |||
#At each time unit, <math>n</math> will decrease by 1 with probability <math display="inline">\frac{1}{3}</math> or decrease by 2 with probability <math display="inline">\frac{2}{3}</math> provided that <math>n\ge2</math>. | |||
#If <math>n=1</math>, then <math>n</math> will decrease to 0, the game is won, or a new round begins, each with probability <math display="inline>\frac{1}{3}</math>. | |||
#If <math>n=0</math>, then a new round begins. | |||
The probability of winning a round with starting value <math>n</math>, denoted <math>P(n)</math>, is described for <math>n\ge2</math> by the recurrence relation <math display="inline">P(n)=\frac{1}{3}P(n-1)+\frac{2}{3}P(n-2)</math>. The general solution to this equation is <math display="inline">P(n)=c_0+c_1{\Big({-\frac{2}{3}}\Big)}^n</math>, and by using the conditions <math>P(0)=0</math> and <math display="inline">P(1)=\frac{1}{3}</math> we get <math display="inline">P(n)=\frac{1}{5}\Big(1-{\Big({-\frac{2}{3}}\Big)}^n\Big)</math>. This approximately equals <math display="inline">\frac{1}{5}</math> for large <math>n</math>, so the probability of winning the game in <math>r</math> rounds is approximately <math display="inline">1-\Big(\frac{4}{5}\Big)^r</math>, which approaches 1 as <math>r</math> increases. | |||
[[Category:Cryptids]] | [[Category:Cryptids]] |
Revision as of 11:16, 22 April 2025
1RB0RD_0RC1RE_1RD0LA_1LE1LC_1RF0LD_---0RA
(bbch)
Lucy's Moonlight is a BB(6) Cryptid. This Turing machine was first mentioned on Discord by Racheline on 1 Mar 2025, who afterward found a set of high-level rules describing it. Shawn Ligocki later discovered and shared a more refined set of rules, displayed below.
0 | 1 | |
---|---|---|
A | 1RB | 0RD |
B | 0RC | 1RE |
C | 1RD | 0LA |
D | 1LE | 1LC |
E | 1RF | 0LD |
F | --- | 0RA |
Analysis
Let . Then,
Consider the partial configuration , which after three steps is . To advance, this shift rule is required: This means we have after steps, with after three further steps. From here, we can use the fact that becomes in four steps if to get this rule: Using this rule produces in steps. With five more steps, we get , which is also . To summarize: With we have and are able to apply this rule times, with three possible scenarios:
- If , then in steps we arrive at . The matching complete configuration is . In steps we have , followed by after three steps. We note that if , then becomes in 8 steps, giving this transition rule:In this instance, the result is , equal to , after steps. This gives a total of steps.
- We can rewrite as if . Given this, we have , and if , then in steps we arrive at , which in steps becomes , and then after three more steps. We end with steps to get , equal to . This gives a total of steps.
- If and we reuse the technique of rewriting , then in steps we arrive at , which in steps becomes , and then in five steps, . Adding steps gives us , and another eight gives us . After steps, the configuration is and after three more, . We conclude with , equal to , after steps, for a total of steps.
The behaviour of Lucy's Moonlight changes at the boundary conditions: or . These changes are addressed below:
- If and , then starting from , we take three steps to get . It is here that another shift rule must come into use:Upon using this shift rule, we get in steps. This configuration is the same as . With 40 more steps, we end at , equal to , for a total of steps.
- If and , then in steps we arrive at . With more steps we now have . Given five steps, the result is , which turns into , equal to in steps for a total of steps.
- If and , then starting from , we get in three steps. Since and are the same, what follows is in steps before finally reaching , and therefore the undefined
F0
transition, in three steps. This gives a total of steps. - If and , then in steps we arrive at . It takes a further steps to reach , and adding three more gives us . With more steps we end up with , equal to . This gives a total of steps.
- If and , then starting from , we take three steps to get , and taking more steps produces . After 40 steps, we reach , which is , for a total of steps.
The information above can be summarized as Substituting , where is the remainder of modulo 3, yields the final result.
These rules imply a sequence that grows tetrationally in , which Lucy's Moonlight iterates through one by one. For each , it reaches the configuration and then repeatedly applies the first three rules until meeting a configuration that satisfies the boundary conditions. If and is congruent to 1 modulo 3, then Lucy's Moonlight will halt; otherwise, it moves on to the next term in .
Trajectory
Starting with after two steps, Lucy's Moonlight repeatedly applies the Collatz-like rules. The first few steps are shown below: From , it takes 11 rule steps to get and 6811 more to get , where . Despite this rapid growth, Lucy's Moonlight appears to be probviously halting if one considers each instance of as the beginning of an independent round of a luck-based game, detailed below:
- A large number is generated randomly.
- At each time unit, will decrease by 1 with probability or decrease by 2 with probability provided that .
- If , then will decrease to 0, the game is won, or a new round begins, each with probability .
- If , then a new round begins.
The probability of winning a round with starting value , denoted , is described for by the recurrence relation . The general solution to this equation is , and by using the conditions and we get . This approximately equals for large , so the probability of winning the game in rounds is approximately , which approaches 1 as increases.