5-state busy beaver winner: Difference between revisions
mNo edit summary |
mNo edit summary |
||
Line 1: | Line 1: | ||
{{machine|1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA}} | {{machine|1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA}} | ||
The '''5-state busy beaver winner''' is the [[Turing machine]] whose step count determines [[BB(5)]]. Up to permutations, that machine is {{TM|1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA|halt}}, which halts after 47176870 steps with 4098 ones on the tape. It was first reported on by Heiner Marxen and Jürgen Buntrock in February 1990,<ref>H. Marxen and J. Buntrock. Attacking the Busy Beaver 5. Bulletin of the EATCS, 40, pages 247-251, February 1990. https://turbotm.de/~heiner/BB/mabu90.html</ref> and the high-level rules were first demonstrated by Michael Buro in November 1990.<ref>Buro, Michael (November 1990). "Ein Beitrag zur Bestimmung von Rados <math>\Sigma(5)</math> oder Wie fängt man fleißige Biber?" [A contribution to the determination of Rado's <math>\Sigma(5)</math> - or - How to catch busy beavers?]. ''Schriften zur Informatik und angewandten Mathematik'' (Report No. 146). Rheinisch-Westfälische Technische Hochschule Aachen. https://skatgame.net/mburo/ps/diploma.pdf</ref> | The '''5-state busy beaver winner''' is the [[Turing machine]] whose step count determines [[BB(5)]]. Up to permutations, that machine is {{TM|1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA|halt}}, which halts after 47176870 steps with 4098 ones on the tape. It was first reported on by Heiner Marxen and Jürgen Buntrock in February 1990,<ref>H. Marxen and J. Buntrock. Attacking the Busy Beaver 5. Bulletin of the EATCS, 40, pages 247-251, February 1990. https://turbotm.de/~heiner/BB/mabu90.html</ref> and the high-level rules were first demonstrated by Michael Buro in November 1990.<ref>Buro, Michael (November 1990). "Ein Beitrag zur Bestimmung von Rados <math>\Sigma(5)</math> - oder - Wie fängt man fleißige Biber?" [A contribution to the determination of Rado's <math>\Sigma(5)</math> - or - How to catch busy beavers?]. ''Schriften zur Informatik und angewandten Mathematik'' (Report No. 146). Rheinisch-Westfälische Technische Hochschule Aachen. https://skatgame.net/mburo/ps/diploma.pdf</ref> | ||
<div style="width: fit-content; text-align: center; margin-left: auto; margin-right: auto;"> | <div style="width: fit-content; text-align: center; margin-left: auto; margin-right: auto;"> | ||
{|class="wikitable" style="margin-left: auto; margin-right: auto;" | {|class="wikitable" style="margin-left: auto; margin-right: auto;" | ||
Line 52: | Line 52: | ||
Substituting <math>x\leftarrow 3x</math>, <math>x\leftarrow 3x+1</math>, and <math>x\leftarrow 3x+2</math> to each of these cases respectively gives us our final result. | Substituting <math>x\leftarrow 3x</math>, <math>x\leftarrow 3x+1</math>, and <math>x\leftarrow 3x+2</math> to each of these cases respectively gives us our final result. | ||
</div></div> | </div></div> | ||
In effect, the halting problem for the 5-state busy beaver winner is about whether repeatedly applying the function <math display="inline">f(n)=3n+6-4\ | In effect, the halting problem for the 5-state busy beaver winner is about whether repeatedly applying the function <math display="inline">f(n)=3n+6-4\Big\lfloor\frac{n}{3}\Big\rfloor</math> eventually produces a value of <math>n</math> that is congruent to 2 modulo 3. | ||
== Trajectory == | == Trajectory == | ||
The initial blank tape represents <math>g(0)</math>, and the [[Collatz-like]] rules are iterated 15 times before halting: | The initial blank tape represents <math>g(0)</math>, and the [[Collatz-like]] rules are iterated 15 times before halting: |
Latest revision as of 11:00, 14 April 2025
The 5-state busy beaver winner is the Turing machine whose step count determines BB(5). Up to permutations, that machine is 1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA
(bbch), which halts after 47176870 steps with 4098 ones on the tape. It was first reported on by Heiner Marxen and Jürgen Buntrock in February 1990,[1] and the high-level rules were first demonstrated by Michael Buro in November 1990.[2]
0 | 1 | |
---|---|---|
A | 1RB | 1LC |
B | 1RC | 1RB |
C | 1RD | 0LE |
D | 1LA | 1LD |
E | 1RZ | 0LA |
Analysis
Let . Then,[3]
Consider the configuration . After one step this configuration becomes . We note the following shift rule:
- If , then in steps we arrive at , which is the same configuration as .
- If , then in steps we arrive at , which in five steps becomes , equal to .
- If , then in steps we arrive at , which in three steps halts with the configuration , for a total of steps from .
Returning to , if , then in three steps it changes into . Here we can make use of one more shift rule:
The information above can be summarized as[4]
In effect, the halting problem for the 5-state busy beaver winner is about whether repeatedly applying the function eventually produces a value of that is congruent to 2 modulo 3.
Trajectory
The initial blank tape represents , and the Collatz-like rules are iterated 15 times before halting:
References
- ↑ H. Marxen and J. Buntrock. Attacking the Busy Beaver 5. Bulletin of the EATCS, 40, pages 247-251, February 1990. https://turbotm.de/~heiner/BB/mabu90.html
- ↑ Buro, Michael (November 1990). "Ein Beitrag zur Bestimmung von Rados - oder - Wie fängt man fleißige Biber?" [A contribution to the determination of Rado's - or - How to catch busy beavers?]. Schriften zur Informatik und angewandten Mathematik (Report No. 146). Rheinisch-Westfälische Technische Hochschule Aachen. https://skatgame.net/mburo/ps/diploma.pdf
- ↑ Pascal Michel. Behavior of busy beavers. https://bbchallenge.org/~pascal.michel/beh#tm52a
- ↑ Aaronson, S. (2020). The Busy Beaver Frontier. Page 10-11. https://www.scottaaronson.com/papers/bb.pdf