5-state busy beaver winner: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
No edit summary
mNo edit summary
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
The '''5-state busy beaver winner''' is the [[Turing machine]] whose step count determines [[BB(5)]]. Up to permutations, that machine is {{TM|1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA|halt}}, which halts after 47176870 steps with 4098 ones on the tape.
{{machine|1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA}}
==Description==
The '''5-state busy beaver winner''' is the [[Turing machine]] whose step count determines [[BB(5)]]. Up to permutations, that machine is {{TM|1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA|halt}}, which halts after 47176870 steps with 4098 ones on the tape. It was first reported on by Heiner Marxen and Jürgen Buntrock in February 1990,<ref>H. Marxen and J. Buntrock. Attacking the Busy Beaver 5. Bulletin of the EATCS, 40, pages 247-251, February 1990. https://turbotm.de/~heiner/BB/mabu90.html</ref> and the high-level rules were first demonstrated by Michael Buro in November 1990.<ref>Buro, Michael (November 1990). "Ein Beitrag zur Bestimmung von Rados <math>\Sigma(5)</math> - oder - Wie fängt man fleißige Biber?" [A contribution to the determination of Rado's <math>\Sigma(5)</math> - or - How to catch busy beavers?]. ''Schriften zur Informatik und angewandten Mathematik'' (Report No. 146). Rheinisch-Westfälische Technische Hochschule Aachen. https://skatgame.net/mburo/ps/diploma.pdf</ref>
[[File:5-state_Busy_Beaver_TransitionTable.png|right|100px|thumb|The transition table of the 5-state busy beaver winner.]]
<div style="width: fit-content; text-align: center; margin-left: auto; margin-right: auto;">
The 5-state busy beaver winner essentially maintains an integer variable <math>x</math> that is represented as the head being to the left of <math>x</math> consecutive <math>1</math>s on the tape, starting at 0. After some steps, the head will instead find itself to the left of a chain of <math>001</math>s on the tape. If <math>x</math> was previously found to be congruent to 2 modulo 3 then this machine will halt. Otherwise, <math>x</math> is updated by means of each "block" of <math>001</math> being replaced by <math>1</math>s through a series of repetitive back and forth head movements. Each back and forth movement takes longer than the previous one and makes the head visit two new cells, turning them into <math>1</math>s. As a result, the space-time diagram of this machine appears similar to that of a [[Bell]], and by the time all of the <math>001</math>s have been replaced by <math>1</math>s, <math>x</math> will have roughly multiplied itself by <math display="inline">\frac{5}{3}</math>. Until this machine halts, <math>x</math> is repeatedly updated in the manner explained here.
{|class="wikitable" style="margin-left: auto; margin-right: auto;"
==Attributions==
! !!0!!1
The 5-state busy beaver winner and its step count were first reported on by Heiner Marxen and Jürgen Buntrock in February 1990<ref>H. Marxen and J. Buntrock. Attacking the Busy Beaver 5. Bulletin of the EATCS, 40, pages 247-251, February 1990. https://turbotm.de/~heiner/BB/mabu90.html</ref>. The high-level rules were first demonstrated by Michael Buro in November 1990<ref>Buro, Michael (November 1990). "Ein Beitrag zur Bestimmung von Rados <math>\Sigma(5)</math> oder Wie fängt man fleißige Biber?" [A contribution to the determination of Rado's <math>\Sigma(5)</math> - or - How to catch busy beavers?]. ''Schriften zur Informatik und angewandten Mathematik'' (Report No. 146). Rheinisch-Westfälische Technische Hochschule Aachen. https://skatgame.net/mburo/ps/diploma.pdf</ref>.
|-
!A
|1RB
|1LC
|-
!B
|1RC
|1RB
|-
!C
|1RD
|0LE
|-
!D
|1LA
|1LD
|-
!E
|1RZ
|0LA
|}
The transition table of the 5-state busy beaver winner.</div>
== Analysis ==
== Analysis ==
Let <math>g(x):=0^\infty\;\textrm{<A}\,1^x\;0^\infty</math>. Then<ref>Pascal Michel. Behavior of busy beavers. https://bbchallenge.org/~pascal.michel/beh#tm52a</ref>,
Let <math>g(x):=0^\infty\;\textrm{<A}\,1^x\;0^\infty</math>. Then,<ref>Pascal Michel. Behavior of busy beavers. https://bbchallenge.org/~pascal.michel/beh#tm52a</ref>
<math display="block">\begin{array}{|lll|}\hline
<math display="block">\begin{array}{|lll|}\hline
g(3x)&\xrightarrow{5x^2+19x+15}&g(5x+6),\\
g(3x)&\xrightarrow{5x^2+19x+15}&g(5x+6),\\
Line 26: Line 47:
<math display="block">\begin{array}{|c|}\hline C(m,n)\xrightarrow{2m+8}C(m+5,n-1)\text{ if }n\ge 1.\\\hline\end{array}</math>
<math display="block">\begin{array}{|c|}\hline C(m,n)\xrightarrow{2m+8}C(m+5,n-1)\text{ if }n\ge 1.\\\hline\end{array}</math>
We have <math>g(x)=C(x-1,0)</math>. As a result, if <math>x\equiv0\ (\operatorname{mod}3)</math>, we then get <math display="inline">C\Big(0,\frac{1}{3}x+1\Big)</math> and the above rule is applied until we reach <math display="inline">C\Big(\frac{5}{3}x+5,0\Big)</math>, equal to <math display="inline">g\Big(\frac{5}{3}x+6\Big)</math>, in <math>\sum_{i=0}^{x/3}(2\times 5i+8)=\textstyle\frac{5}{9}x^2+\frac{13}{3}x+8</math> steps for a total of <math display="inline">\frac{5}{9}x^2+\frac{19}{3}x+15</math> steps from <math>g(x)</math> (with <math>g(0)</math> we see the impossible configuration <math>C(-1,0)</math>, but it reaches <math>g(6)</math> in 15 steps regardless). However, if <math>x\equiv1\ (\operatorname{mod}3)</math>, we then get <math display="inline">C\Big(3,\frac{x+2}{3}\Big)</math> which reaches <math display="inline">C\Big(3+\frac{5(x+2)}{3},0\Big)</math>, equal to <math display="inline">g\Big(\frac{5x+22}{3}\Big)</math>, in <math display="inline">\frac{5}{9}x^2+\frac{47}{9}x+\frac{74}{9}</math> steps (<math display="inline">\frac{5}{9}x^2+\frac{65}{9}x+\frac{173}{9}</math> steps total).
We have <math>g(x)=C(x-1,0)</math>. As a result, if <math>x\equiv0\ (\operatorname{mod}3)</math>, we then get <math display="inline">C\Big(0,\frac{1}{3}x+1\Big)</math> and the above rule is applied until we reach <math display="inline">C\Big(\frac{5}{3}x+5,0\Big)</math>, equal to <math display="inline">g\Big(\frac{5}{3}x+6\Big)</math>, in <math>\sum_{i=0}^{x/3}(2\times 5i+8)=\textstyle\frac{5}{9}x^2+\frac{13}{3}x+8</math> steps for a total of <math display="inline">\frac{5}{9}x^2+\frac{19}{3}x+15</math> steps from <math>g(x)</math> (with <math>g(0)</math> we see the impossible configuration <math>C(-1,0)</math>, but it reaches <math>g(6)</math> in 15 steps regardless). However, if <math>x\equiv1\ (\operatorname{mod}3)</math>, we then get <math display="inline">C\Big(3,\frac{x+2}{3}\Big)</math> which reaches <math display="inline">C\Big(3+\frac{5(x+2)}{3},0\Big)</math>, equal to <math display="inline">g\Big(\frac{5x+22}{3}\Big)</math>, in <math display="inline">\frac{5}{9}x^2+\frac{47}{9}x+\frac{74}{9}</math> steps (<math display="inline">\frac{5}{9}x^2+\frac{65}{9}x+\frac{173}{9}</math> steps total).


The information above can be summarized as<ref>Aaronson, S. (2020). The Busy Beaver Frontier. Page 10-11. https://www.scottaaronson.com/papers/bb.pdf</ref>
The information above can be summarized as<ref>Aaronson, S. (2020). The Busy Beaver Frontier. Page 10-11. https://www.scottaaronson.com/papers/bb.pdf</ref>
Line 32: Line 52:
Substituting <math>x\leftarrow 3x</math>, <math>x\leftarrow 3x+1</math>, and <math>x\leftarrow 3x+2</math> to each of these cases respectively gives us our final result.
Substituting <math>x\leftarrow 3x</math>, <math>x\leftarrow 3x+1</math>, and <math>x\leftarrow 3x+2</math> to each of these cases respectively gives us our final result.
</div></div>
</div></div>
In effect, the halting problem for the 5-state busy beaver winner is about whether repeatedly applying the function <math display="inline">f(n)=3n+6-4\Big\lfloor\frac{n}{3}\Big\rfloor</math> eventually produces a value of <math>n</math> that is congruent to 2 modulo 3.
== Trajectory ==
== Trajectory ==
The initial blank tape represents <math>g(0)</math>, and the [[Collatz-like]] rules are iterated 15 times before halting:
The initial blank tape represents <math>g(0)</math>, and the [[Collatz-like]] rules are iterated 15 times before halting:
Line 38: Line 59:
g(114)&\xrightarrow{7957}&g(196)&\xrightarrow{22777}&g(334)&\xrightarrow{64407}&g(564)&\xrightarrow{180307}&g(946)&\xrightarrow{504027}\\
g(114)&\xrightarrow{7957}&g(196)&\xrightarrow{22777}&g(334)&\xrightarrow{64407}&g(564)&\xrightarrow{180307}&g(946)&\xrightarrow{504027}\\
g(1584)&\xrightarrow{1403967}&g(2646)&\xrightarrow{3906393}&g(4416)&\xrightarrow{10861903}&g(7366)&\xrightarrow{30196527}&g(12284)&\xrightarrow{24576}\end{array}\\0^\infty\;1\;\textrm{Z>}\;01\;001^{4095}\;1\;0^\infty\\\hline\end{array}</math>
g(1584)&\xrightarrow{1403967}&g(2646)&\xrightarrow{3906393}&g(4416)&\xrightarrow{10861903}&g(7366)&\xrightarrow{30196527}&g(12284)&\xrightarrow{24576}\end{array}\\0^\infty\;1\;\textrm{Z>}\;01\;001^{4095}\;1\;0^\infty\\\hline\end{array}</math>
''To view an animation of <math>g(0)</math> becoming <math>g(34)</math> in 365 steps, click [https://wiki.bbchallenge.org/w/images/f/f1/BB5Champ_0-365.gif here].''
== References ==
== References ==
<references/>

Latest revision as of 11:00, 14 April 2025

The 5-state busy beaver winner is the Turing machine whose step count determines BB(5). Up to permutations, that machine is 1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA (bbch), which halts after 47176870 steps with 4098 ones on the tape. It was first reported on by Heiner Marxen and Jürgen Buntrock in February 1990,[1] and the high-level rules were first demonstrated by Michael Buro in November 1990.[2]

0 1
A 1RB 1LC
B 1RC 1RB
C 1RD 0LE
D 1LA 1LD
E 1RZ 0LA
The transition table of the 5-state busy beaver winner.

Analysis

Let . Then,[3]

Proof

Consider the configuration . After one step this configuration becomes . We note the following shift rule:

Using this shift rule, we get after steps. If , then we get four steps later. Another shift rule is needed here:
In this instance, is substituted for , which creates three different scenarios depending on the value of modulo 3. They are as follows:

  1. If , then in steps we arrive at , which is the same configuration as .
  2. If , then in steps we arrive at , which in five steps becomes , equal to .
  3. If , then in steps we arrive at , which in three steps halts with the configuration , for a total of steps from .

Returning to , if , then in three steps it changes into . Here we can make use of one more shift rule:

Doing so takes us to in steps, which after one step becomes the configuration , equal to . To summarize:
We have . As a result, if , we then get and the above rule is applied until we reach , equal to , in steps for a total of steps from (with we see the impossible configuration , but it reaches in 15 steps regardless). However, if , we then get which reaches , equal to , in steps ( steps total).

The information above can be summarized as[4]

Substituting , , and to each of these cases respectively gives us our final result.

In effect, the halting problem for the 5-state busy beaver winner is about whether repeatedly applying the function eventually produces a value of that is congruent to 2 modulo 3.

Trajectory

The initial blank tape represents , and the Collatz-like rules are iterated 15 times before halting:

References

  1. H. Marxen and J. Buntrock. Attacking the Busy Beaver 5. Bulletin of the EATCS, 40, pages 247-251, February 1990. https://turbotm.de/~heiner/BB/mabu90.html
  2. Buro, Michael (November 1990). "Ein Beitrag zur Bestimmung von Rados - oder - Wie fängt man fleißige Biber?" [A contribution to the determination of Rado's - or - How to catch busy beavers?]. Schriften zur Informatik und angewandten Mathematik (Report No. 146). Rheinisch-Westfälische Technische Hochschule Aachen. https://skatgame.net/mburo/ps/diploma.pdf
  3. Pascal Michel. Behavior of busy beavers. https://bbchallenge.org/~pascal.michel/beh#tm52a
  4. Aaronson, S. (2020). The Busy Beaver Frontier. Page 10-11. https://www.scottaaronson.com/papers/bb.pdf