5-state busy beaver winner: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
No edit summary
Tag: Manual revert
mNo edit summary
 
(9 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{machine|1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA}}
{{machine|1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA}}
The 5-state busy beaver ([[BB(5)]]) champion (and winner!) is: {{TM|1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA|halt}}. It was found by Heiner Marxen and Jürgen Buntrock in 1989<ref>H. Marxen and J. Buntrock. Attacking the Busy Beaver 5. Bulletin of the EATCS, 40, pages 247-251, February 1990. https://turbotm.de/~heiner/BB/mabu90.html</ref>. The machine halts after 47,176,870 steps and with 4098 1's on the tape, showing that <math>BB(5) \ge 47{,}176{,}870</math> and <math>\Sigma(5) \ge 4098</math>.
The '''5-state busy beaver winner''' is the [[Turing machine]] whose step count determines [[BB(5)]]. Up to permutations, that machine is {{TM|1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA|halt}}, which halts after 47176870 steps with 4098 ones on the tape. It was first reported on by Heiner Marxen and Jürgen Buntrock in February 1990,<ref>H. Marxen and J. Buntrock. Attacking the Busy Beaver 5. Bulletin of the EATCS, 40, pages 247-251, February 1990. https://turbotm.de/~heiner/BB/mabu90.html</ref> and the high-level rules were first demonstrated by Michael Buro in November 1990.<ref>Buro, Michael (November 1990). "Ein Beitrag zur Bestimmung von Rados <math>\Sigma(5)</math> - oder - Wie fängt man fleißige Biber?" [A contribution to the determination of Rado's <math>\Sigma(5)</math> - or - How to catch busy beavers?]. ''Schriften zur Informatik und angewandten Mathematik'' (Report No. 146). Rheinisch-Westfälische Technische Hochschule Aachen. https://skatgame.net/mburo/ps/diploma.pdf</ref>
 
<div style="width: fit-content; text-align: center; margin-left: auto; margin-right: auto;">
== Behavior ==
{|class="wikitable" style="margin-left: auto; margin-right: auto;"
This machine repeatedly applies the following [[Collatz-like]] map, starting with <math>x = 0</math><ref>Aaronson, S. (2020). The Busy Beaver Frontier. Page 10-11. https://www.scottaaronson.com/papers/bb.pdf</ref>:
! !!0!!1
<math display="block">\begin{align}
|-
  g(x) & \to \frac{5x+18}{3} && \text{if }x \equiv 0 \pmod{3} \\
!A
  g(x) & \to \frac{5x+22}{3} && \text{if }x \equiv 1 \pmod{3} \\
|1RB
  g(x) & \to \text{HALT}    && \text{if }x \equiv 2 \pmod{3}
|1LC
\end{align}</math>which can alternatively be written as<ref>Pascal Michel. Behavior of busy beavers.https://bbchallenge.org/~pascal.michel/beh#tm52a</ref>:
|-
 
!B
<math display="block">\begin{align}
|1RC
  g(3k)   & \to 5k+6 \\
|1RB
  g(3k+1) & \to 5k+9 \\
|-
  g(3k+2) & \to \text{HALT} \\
!C
\end{align}</math>
|1RD
 
|0LE
The full orbit from <math>x = 0</math> is:
|-
<math display="block">\begin{array}{l}
!D
  0    & \to & 6    & \to & 16  & \to & 34  & \to & 64    & \to & \\
|1LA
  114  & \to & 196  & \to & 334  & \to & 564  & \to & 946  & \to & \\
|1LD
  1584 & \to & 2646 & \to & 4416 & \to & 7366 & \to & 12284 & \to & \text{HALT}
|-
!E
|1RZ
|0LA
|}
The transition table of the 5-state busy beaver winner.</div>
== Analysis ==
Let <math>g(x):=0^\infty\;\textrm{<A}\,1^x\;0^\infty</math>. Then,<ref>Pascal Michel. Behavior of busy beavers. https://bbchallenge.org/~pascal.michel/beh#tm52a</ref>
<math display="block">\begin{array}{|lll|}\hline
g(3x)&\xrightarrow{5x^2+19x+15}&g(5x+6),\\
g(3x+1)&\xrightarrow{5x^2+25x+27}&g(5x+9),\\
g(3x+2)&\xrightarrow{6x+12}&0^\infty\;1\;\textrm{Z>}\;01\;001^{x+1}\;1\;0^\infty.\\\hline
\end{array}</math>
\end{array}</math>
<div class="toccolours mw-collapsible mw-collapsed">'''Proof'''<div class="mw-collapsible-content">
Consider the configuration <math>C(m,n):=0^\infty\;\textrm{<A}\;1^m\;001^n\;1\;0^\infty</math>. After one step this configuration becomes <math>0^\infty\;1\;\textrm{B>}\;1^m\;001^n\;1\;0^\infty</math>. We note the following shift rule:
<math display="block">\begin{array}{|c|}\hline\textrm{B>}\;1^a\xrightarrow{a}1^a\;\textrm{B>}\\\hline\end{array}</math>
Using this shift rule, we get <math>0^\infty\;1^{m+1}\;\textrm{B>}\;001^n\;1\;0^\infty</math> after <math>m</math> steps. If <math>n=0</math>, then we get <math>0^\infty\;1^{m+4}\;\textrm{<A}\;1\;0^\infty</math> four steps later. Another shift rule is needed here:
<math display="block">\begin{array}{|c|}\hline1^{3a}\;\textrm{<A}\xrightarrow{3a}\textrm{<A}\;001^a\\\hline\end{array}</math>
In this instance, <math display="inline">\Big\lfloor\frac{m+4}{3}\Big\rfloor</math> is substituted for <math>a</math>, which creates three different scenarios depending on the value of <math>m</math> modulo 3. They are as follows:
# If <math>m+4\equiv0\ (\operatorname{mod}3)</math>, then in <math>m+4</math> steps we arrive at <math>0^\infty\;\textrm{<A}\;001^{(m+4)/3}\;1\;0^\infty</math>, which is the same configuration as <math display="inline">C\Big(0,\frac{m+4}{3}\Big)</math>.
# If <math>m+4\equiv1\ (\operatorname{mod}3)</math>, then in <math>m+3</math> steps we arrive at <math>0^\infty\;1\;\textrm{<A}\;001^{(m+3)/3}\;1\;0^\infty</math>, which in five steps becomes <math>0^\infty\;\textrm{<A}\;111\;001^{(m+3)/3}\;1\;0^\infty</math>, equal to <math display="inline">C\Big(3,\frac{m+3}{3}\Big)</math>.
# If <math>m+4\equiv2\ (\operatorname{mod}3)</math>, then in <math>m+2</math> steps we arrive at <math>0^\infty\;11\;\textrm{<A}\;001^{(m+2)/3}\;1\;0^\infty</math>, which in three steps halts with the configuration <math>0^\infty\;1\;\textrm{Z>}\;01\;001^{(m+2)/3}\;1\;0^\infty</math>, for a total of <math>2m+10</math> steps from <math>C(m,0)</math>.
Returning to <math>0^\infty\;1^{m+1}\;\textrm{B>}\;001^n\;1\;0^\infty</math>, if <math>n\ge 1</math>, then in three steps it changes into <math>0^\infty\;1^{m+3}\;\textrm{<D}\;1\;001^{n-1}\;1\;0^\infty</math>. Here we can make use of one more shift rule:
<math display="block">\begin{array}{|c|}\hline1^a\;\textrm{<D}\xrightarrow{a}\textrm{<D}\;1^a\\\hline\end{array}</math>
Doing so takes us to <math>0^\infty\;\textrm{<D}\;1^{m+4}\;001^{n-1}\;1\;0^\infty</math> in <math>m+3</math> steps, which after one step becomes the configuration <math>0^\infty\;\textrm{<A}\;1^{m+5}\;001^{n-1}\;1\;0^\infty</math>, equal to <math>C(m+5,n-1)</math>. To summarize:
<math display="block">\begin{array}{|c|}\hline C(m,n)\xrightarrow{2m+8}C(m+5,n-1)\text{ if }n\ge 1.\\\hline\end{array}</math>
We have <math>g(x)=C(x-1,0)</math>. As a result, if <math>x\equiv0\ (\operatorname{mod}3)</math>, we then get <math display="inline">C\Big(0,\frac{1}{3}x+1\Big)</math> and the above rule is applied until we reach <math display="inline">C\Big(\frac{5}{3}x+5,0\Big)</math>, equal to <math display="inline">g\Big(\frac{5}{3}x+6\Big)</math>, in <math>\sum_{i=0}^{x/3}(2\times 5i+8)=\textstyle\frac{5}{9}x^2+\frac{13}{3}x+8</math> steps for a total of <math display="inline">\frac{5}{9}x^2+\frac{19}{3}x+15</math> steps from <math>g(x)</math> (with <math>g(0)</math> we see the impossible configuration <math>C(-1,0)</math>, but it reaches <math>g(6)</math> in 15 steps regardless). However, if <math>x\equiv1\ (\operatorname{mod}3)</math>, we then get <math display="inline">C\Big(3,\frac{x+2}{3}\Big)</math> which reaches <math display="inline">C\Big(3+\frac{5(x+2)}{3},0\Big)</math>, equal to <math display="inline">g\Big(\frac{5x+22}{3}\Big)</math>, in <math display="inline">\frac{5}{9}x^2+\frac{47}{9}x+\frac{74}{9}</math> steps (<math display="inline">\frac{5}{9}x^2+\frac{65}{9}x+\frac{173}{9}</math> steps total).


The information above can be summarized as<ref>Aaronson, S. (2020). The Busy Beaver Frontier. Page 10-11. https://www.scottaaronson.com/papers/bb.pdf</ref>
<math display="block">g(x)\rightarrow\begin{cases}g\Big(\frac{5}{3}x+6\Big)&\text{if }x\equiv0\pmod{3},\\g\Big(\frac{5x+22}{3}\Big)&\text{if }x\equiv1\pmod{3},\\0^\infty\;1\;\textrm{Z>}\;01\;001^{(x+1)/3}\;1\;0^\infty&\text{if }x\equiv2\pmod{3}.\end{cases}</math>
Substituting <math>x\leftarrow 3x</math>, <math>x\leftarrow 3x+1</math>, and <math>x\leftarrow 3x+2</math> to each of these cases respectively gives us our final result.
</div></div>
In effect, the halting problem for the 5-state busy beaver winner is about whether repeatedly applying the function <math display="inline">f(n)=3n+6-4\Big\lfloor\frac{n}{3}\Big\rfloor</math> eventually produces a value of <math>n</math> that is congruent to 2 modulo 3.
== Trajectory ==
The initial blank tape represents <math>g(0)</math>, and the [[Collatz-like]] rules are iterated 15 times before halting:
<math display="block">\begin{array}{|l|}\hline\begin{array}{lllllllllllllll}
g(0)&\xrightarrow{15}&g(6)&\xrightarrow{73} &g(16)&\xrightarrow{277}&g(34)&\xrightarrow{907}&g(64)&\xrightarrow{2757}\\
g(114)&\xrightarrow{7957}&g(196)&\xrightarrow{22777}&g(334)&\xrightarrow{64407}&g(564)&\xrightarrow{180307}&g(946)&\xrightarrow{504027}\\
g(1584)&\xrightarrow{1403967}&g(2646)&\xrightarrow{3906393}&g(4416)&\xrightarrow{10861903}&g(7366)&\xrightarrow{30196527}&g(12284)&\xrightarrow{24576}\end{array}\\0^\infty\;1\;\textrm{Z>}\;01\;001^{4095}\;1\;0^\infty\\\hline\end{array}</math>
== References ==
== References ==
<references/>

Latest revision as of 11:00, 14 April 2025

The 5-state busy beaver winner is the Turing machine whose step count determines BB(5). Up to permutations, that machine is 1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA (bbch), which halts after 47176870 steps with 4098 ones on the tape. It was first reported on by Heiner Marxen and Jürgen Buntrock in February 1990,[1] and the high-level rules were first demonstrated by Michael Buro in November 1990.[2]

0 1
A 1RB 1LC
B 1RC 1RB
C 1RD 0LE
D 1LA 1LD
E 1RZ 0LA
The transition table of the 5-state busy beaver winner.

Analysis

Let . Then,[3]

Proof

Consider the configuration . After one step this configuration becomes . We note the following shift rule:

Using this shift rule, we get after steps. If , then we get four steps later. Another shift rule is needed here:
In this instance, is substituted for , which creates three different scenarios depending on the value of modulo 3. They are as follows:

  1. If , then in steps we arrive at , which is the same configuration as .
  2. If , then in steps we arrive at , which in five steps becomes , equal to .
  3. If , then in steps we arrive at , which in three steps halts with the configuration , for a total of steps from .

Returning to , if , then in three steps it changes into . Here we can make use of one more shift rule:

Doing so takes us to in steps, which after one step becomes the configuration , equal to . To summarize:
We have . As a result, if , we then get and the above rule is applied until we reach , equal to , in steps for a total of steps from (with we see the impossible configuration , but it reaches in 15 steps regardless). However, if , we then get which reaches , equal to , in steps ( steps total).

The information above can be summarized as[4]

Substituting , , and to each of these cases respectively gives us our final result.

In effect, the halting problem for the 5-state busy beaver winner is about whether repeatedly applying the function eventually produces a value of that is congruent to 2 modulo 3.

Trajectory

The initial blank tape represents , and the Collatz-like rules are iterated 15 times before halting:

References

  1. H. Marxen and J. Buntrock. Attacking the Busy Beaver 5. Bulletin of the EATCS, 40, pages 247-251, February 1990. https://turbotm.de/~heiner/BB/mabu90.html
  2. Buro, Michael (November 1990). "Ein Beitrag zur Bestimmung von Rados - oder - Wie fängt man fleißige Biber?" [A contribution to the determination of Rado's - or - How to catch busy beavers?]. Schriften zur Informatik und angewandten Mathematik (Report No. 146). Rheinisch-Westfälische Technische Hochschule Aachen. https://skatgame.net/mburo/ps/diploma.pdf
  3. Pascal Michel. Behavior of busy beavers. https://bbchallenge.org/~pascal.michel/beh#tm52a
  4. Aaronson, S. (2020). The Busy Beaver Frontier. Page 10-11. https://www.scottaaronson.com/papers/bb.pdf