5-state busy beaver winner: Difference between revisions
No edit summary Tag: Manual revert |
mNo edit summary |
||
(9 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
{{machine|1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA}} | {{machine|1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA}} | ||
The 5-state busy beaver | The '''5-state busy beaver winner''' is the [[Turing machine]] whose step count determines [[BB(5)]]. Up to permutations, that machine is {{TM|1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA|halt}}, which halts after 47176870 steps with 4098 ones on the tape. It was first reported on by Heiner Marxen and Jürgen Buntrock in February 1990,<ref>H. Marxen and J. Buntrock. Attacking the Busy Beaver 5. Bulletin of the EATCS, 40, pages 247-251, February 1990. https://turbotm.de/~heiner/BB/mabu90.html</ref> and the high-level rules were first demonstrated by Michael Buro in November 1990.<ref>Buro, Michael (November 1990). "Ein Beitrag zur Bestimmung von Rados <math>\Sigma(5)</math> - oder - Wie fängt man fleißige Biber?" [A contribution to the determination of Rado's <math>\Sigma(5)</math> - or - How to catch busy beavers?]. ''Schriften zur Informatik und angewandten Mathematik'' (Report No. 146). Rheinisch-Westfälische Technische Hochschule Aachen. https://skatgame.net/mburo/ps/diploma.pdf</ref> | ||
<div style="width: fit-content; text-align: center; margin-left: auto; margin-right: auto;"> | |||
{|class="wikitable" style="margin-left: auto; margin-right: auto;" | |||
! !!0!!1 | |||
< | |- | ||
!A | |||
|1RB | |||
|1LC | |||
\ | |- | ||
!B | |||
<math display="block">\begin{ | |1RC | ||
|1RB | |||
|- | |||
!C | |||
\ | |1RD | ||
|0LE | |||
|- | |||
!D | |||
|1LA | |||
|1LD | |||
|- | |||
!E | |||
|1RZ | |||
|0LA | |||
|} | |||
The transition table of the 5-state busy beaver winner.</div> | |||
== Analysis == | |||
Let <math>g(x):=0^\infty\;\textrm{<A}\,1^x\;0^\infty</math>. Then,<ref>Pascal Michel. Behavior of busy beavers. https://bbchallenge.org/~pascal.michel/beh#tm52a</ref> | |||
<math display="block">\begin{array}{|lll|}\hline | |||
g(3x)&\xrightarrow{5x^2+19x+15}&g(5x+6),\\ | |||
g(3x+1)&\xrightarrow{5x^2+25x+27}&g(5x+9),\\ | |||
g(3x+2)&\xrightarrow{6x+12}&0^\infty\;1\;\textrm{Z>}\;01\;001^{x+1}\;1\;0^\infty.\\\hline | |||
\end{array}</math> | \end{array}</math> | ||
<div class="toccolours mw-collapsible mw-collapsed">'''Proof'''<div class="mw-collapsible-content"> | |||
Consider the configuration <math>C(m,n):=0^\infty\;\textrm{<A}\;1^m\;001^n\;1\;0^\infty</math>. After one step this configuration becomes <math>0^\infty\;1\;\textrm{B>}\;1^m\;001^n\;1\;0^\infty</math>. We note the following shift rule: | |||
<math display="block">\begin{array}{|c|}\hline\textrm{B>}\;1^a\xrightarrow{a}1^a\;\textrm{B>}\\\hline\end{array}</math> | |||
Using this shift rule, we get <math>0^\infty\;1^{m+1}\;\textrm{B>}\;001^n\;1\;0^\infty</math> after <math>m</math> steps. If <math>n=0</math>, then we get <math>0^\infty\;1^{m+4}\;\textrm{<A}\;1\;0^\infty</math> four steps later. Another shift rule is needed here: | |||
<math display="block">\begin{array}{|c|}\hline1^{3a}\;\textrm{<A}\xrightarrow{3a}\textrm{<A}\;001^a\\\hline\end{array}</math> | |||
In this instance, <math display="inline">\Big\lfloor\frac{m+4}{3}\Big\rfloor</math> is substituted for <math>a</math>, which creates three different scenarios depending on the value of <math>m</math> modulo 3. They are as follows: | |||
# If <math>m+4\equiv0\ (\operatorname{mod}3)</math>, then in <math>m+4</math> steps we arrive at <math>0^\infty\;\textrm{<A}\;001^{(m+4)/3}\;1\;0^\infty</math>, which is the same configuration as <math display="inline">C\Big(0,\frac{m+4}{3}\Big)</math>. | |||
# If <math>m+4\equiv1\ (\operatorname{mod}3)</math>, then in <math>m+3</math> steps we arrive at <math>0^\infty\;1\;\textrm{<A}\;001^{(m+3)/3}\;1\;0^\infty</math>, which in five steps becomes <math>0^\infty\;\textrm{<A}\;111\;001^{(m+3)/3}\;1\;0^\infty</math>, equal to <math display="inline">C\Big(3,\frac{m+3}{3}\Big)</math>. | |||
# If <math>m+4\equiv2\ (\operatorname{mod}3)</math>, then in <math>m+2</math> steps we arrive at <math>0^\infty\;11\;\textrm{<A}\;001^{(m+2)/3}\;1\;0^\infty</math>, which in three steps halts with the configuration <math>0^\infty\;1\;\textrm{Z>}\;01\;001^{(m+2)/3}\;1\;0^\infty</math>, for a total of <math>2m+10</math> steps from <math>C(m,0)</math>. | |||
Returning to <math>0^\infty\;1^{m+1}\;\textrm{B>}\;001^n\;1\;0^\infty</math>, if <math>n\ge 1</math>, then in three steps it changes into <math>0^\infty\;1^{m+3}\;\textrm{<D}\;1\;001^{n-1}\;1\;0^\infty</math>. Here we can make use of one more shift rule: | |||
<math display="block">\begin{array}{|c|}\hline1^a\;\textrm{<D}\xrightarrow{a}\textrm{<D}\;1^a\\\hline\end{array}</math> | |||
Doing so takes us to <math>0^\infty\;\textrm{<D}\;1^{m+4}\;001^{n-1}\;1\;0^\infty</math> in <math>m+3</math> steps, which after one step becomes the configuration <math>0^\infty\;\textrm{<A}\;1^{m+5}\;001^{n-1}\;1\;0^\infty</math>, equal to <math>C(m+5,n-1)</math>. To summarize: | |||
<math display="block">\begin{array}{|c|}\hline C(m,n)\xrightarrow{2m+8}C(m+5,n-1)\text{ if }n\ge 1.\\\hline\end{array}</math> | |||
We have <math>g(x)=C(x-1,0)</math>. As a result, if <math>x\equiv0\ (\operatorname{mod}3)</math>, we then get <math display="inline">C\Big(0,\frac{1}{3}x+1\Big)</math> and the above rule is applied until we reach <math display="inline">C\Big(\frac{5}{3}x+5,0\Big)</math>, equal to <math display="inline">g\Big(\frac{5}{3}x+6\Big)</math>, in <math>\sum_{i=0}^{x/3}(2\times 5i+8)=\textstyle\frac{5}{9}x^2+\frac{13}{3}x+8</math> steps for a total of <math display="inline">\frac{5}{9}x^2+\frac{19}{3}x+15</math> steps from <math>g(x)</math> (with <math>g(0)</math> we see the impossible configuration <math>C(-1,0)</math>, but it reaches <math>g(6)</math> in 15 steps regardless). However, if <math>x\equiv1\ (\operatorname{mod}3)</math>, we then get <math display="inline">C\Big(3,\frac{x+2}{3}\Big)</math> which reaches <math display="inline">C\Big(3+\frac{5(x+2)}{3},0\Big)</math>, equal to <math display="inline">g\Big(\frac{5x+22}{3}\Big)</math>, in <math display="inline">\frac{5}{9}x^2+\frac{47}{9}x+\frac{74}{9}</math> steps (<math display="inline">\frac{5}{9}x^2+\frac{65}{9}x+\frac{173}{9}</math> steps total). | |||
The information above can be summarized as<ref>Aaronson, S. (2020). The Busy Beaver Frontier. Page 10-11. https://www.scottaaronson.com/papers/bb.pdf</ref> | |||
<math display="block">g(x)\rightarrow\begin{cases}g\Big(\frac{5}{3}x+6\Big)&\text{if }x\equiv0\pmod{3},\\g\Big(\frac{5x+22}{3}\Big)&\text{if }x\equiv1\pmod{3},\\0^\infty\;1\;\textrm{Z>}\;01\;001^{(x+1)/3}\;1\;0^\infty&\text{if }x\equiv2\pmod{3}.\end{cases}</math> | |||
Substituting <math>x\leftarrow 3x</math>, <math>x\leftarrow 3x+1</math>, and <math>x\leftarrow 3x+2</math> to each of these cases respectively gives us our final result. | |||
</div></div> | |||
In effect, the halting problem for the 5-state busy beaver winner is about whether repeatedly applying the function <math display="inline">f(n)=3n+6-4\Big\lfloor\frac{n}{3}\Big\rfloor</math> eventually produces a value of <math>n</math> that is congruent to 2 modulo 3. | |||
== Trajectory == | |||
The initial blank tape represents <math>g(0)</math>, and the [[Collatz-like]] rules are iterated 15 times before halting: | |||
<math display="block">\begin{array}{|l|}\hline\begin{array}{lllllllllllllll} | |||
g(0)&\xrightarrow{15}&g(6)&\xrightarrow{73} &g(16)&\xrightarrow{277}&g(34)&\xrightarrow{907}&g(64)&\xrightarrow{2757}\\ | |||
g(114)&\xrightarrow{7957}&g(196)&\xrightarrow{22777}&g(334)&\xrightarrow{64407}&g(564)&\xrightarrow{180307}&g(946)&\xrightarrow{504027}\\ | |||
g(1584)&\xrightarrow{1403967}&g(2646)&\xrightarrow{3906393}&g(4416)&\xrightarrow{10861903}&g(7366)&\xrightarrow{30196527}&g(12284)&\xrightarrow{24576}\end{array}\\0^\infty\;1\;\textrm{Z>}\;01\;001^{4095}\;1\;0^\infty\\\hline\end{array}</math> | |||
== References == | == References == | ||
<references/> |
Latest revision as of 11:00, 14 April 2025
The 5-state busy beaver winner is the Turing machine whose step count determines BB(5). Up to permutations, that machine is 1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA
(bbch), which halts after 47176870 steps with 4098 ones on the tape. It was first reported on by Heiner Marxen and Jürgen Buntrock in February 1990,[1] and the high-level rules were first demonstrated by Michael Buro in November 1990.[2]
0 | 1 | |
---|---|---|
A | 1RB | 1LC |
B | 1RC | 1RB |
C | 1RD | 0LE |
D | 1LA | 1LD |
E | 1RZ | 0LA |
Analysis
Let . Then,[3]
Consider the configuration . After one step this configuration becomes . We note the following shift rule:
- If , then in steps we arrive at , which is the same configuration as .
- If , then in steps we arrive at , which in five steps becomes , equal to .
- If , then in steps we arrive at , which in three steps halts with the configuration , for a total of steps from .
Returning to , if , then in three steps it changes into . Here we can make use of one more shift rule:
The information above can be summarized as[4]
In effect, the halting problem for the 5-state busy beaver winner is about whether repeatedly applying the function eventually produces a value of that is congruent to 2 modulo 3.
Trajectory
The initial blank tape represents , and the Collatz-like rules are iterated 15 times before halting:
References
- ↑ H. Marxen and J. Buntrock. Attacking the Busy Beaver 5. Bulletin of the EATCS, 40, pages 247-251, February 1990. https://turbotm.de/~heiner/BB/mabu90.html
- ↑ Buro, Michael (November 1990). "Ein Beitrag zur Bestimmung von Rados - oder - Wie fängt man fleißige Biber?" [A contribution to the determination of Rado's - or - How to catch busy beavers?]. Schriften zur Informatik und angewandten Mathematik (Report No. 146). Rheinisch-Westfälische Technische Hochschule Aachen. https://skatgame.net/mburo/ps/diploma.pdf
- ↑ Pascal Michel. Behavior of busy beavers. https://bbchallenge.org/~pascal.michel/beh#tm52a
- ↑ Aaronson, S. (2020). The Busy Beaver Frontier. Page 10-11. https://www.scottaaronson.com/papers/bb.pdf