5-state busy beaver winner: Difference between revisions

From BusyBeaverWiki
Jump to navigation Jump to search
No edit summary
mNo edit summary
 
(13 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{machine|1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA}}
{{machine|1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA}}
The 5-state busy beaver ([[BB(5)]]) winner is {{TM|1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA|halt}}. Discovered by Heiner Marxen and Jürgen Buntrock in 1989<ref>H. Marxen and J. Buntrock. Attacking the Busy Beaver 5. Bulletin of the EATCS, 40, pages 247-251, February 1990. https://turbotm.de/~heiner/BB/mabu90.html</ref>, this machine proved that <math>\operatorname{BB}(5)\ge 47176870</math> and <math>\Sigma(5)\ge 4098</math> at the time.
The '''5-state busy beaver winner''' is the [[Turing machine]] whose step count determines [[BB(5)]]. Up to permutations, that machine is {{TM|1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA|halt}}, which halts after 47176870 steps with 4098 ones on the tape. It was first reported on by Heiner Marxen and Jürgen Buntrock in February 1990,<ref>H. Marxen and J. Buntrock. Attacking the Busy Beaver 5. Bulletin of the EATCS, 40, pages 247-251, February 1990. https://turbotm.de/~heiner/BB/mabu90.html</ref> and the high-level rules were first demonstrated by Michael Buro in November 1990.<ref>Buro, Michael (November 1990). "Ein Beitrag zur Bestimmung von Rados <math>\Sigma(5)</math> - oder - Wie fängt man fleißige Biber?" [A contribution to the determination of Rado's <math>\Sigma(5)</math> - or - How to catch busy beavers?]. ''Schriften zur Informatik und angewandten Mathematik'' (Report No. 146). Rheinisch-Westfälische Technische Hochschule Aachen. https://skatgame.net/mburo/ps/diploma.pdf</ref>
<div style="width: fit-content; text-align: center; margin-left: auto; margin-right: auto;">
{|class="wikitable" style="margin-left: auto; margin-right: auto;"
! !!0!!1
|-
!A
|1RB
|1LC
|-
!B
|1RC
|1RB
|-
!C
|1RD
|0LE
|-
!D
|1LA
|1LD
|-
!E
|1RZ
|0LA
|}
The transition table of the 5-state busy beaver winner.</div>
== Analysis ==
== Analysis ==
===Rules===
Let <math>g(x):=0^\infty\;\textrm{<A}\,1^x\;0^\infty</math>. Then,<ref>Pascal Michel. Behavior of busy beavers. https://bbchallenge.org/~pascal.michel/beh#tm52a</ref>
Let <math>g(x):=0^\infty\;\textrm{<A}\,1^x\;0^\infty</math>. Then<ref>Pascal Michel. Behavior of busy beavers.https://bbchallenge.org/~pascal.michel/beh#tm52a</ref>,
<math display="block">\begin{array}{|lll|}\hline
<math display="block">\begin{array}{|lll|}\hline
g(3x)&\xrightarrow{5x^2+19x+15}&g(5x+6),\\
g(3x)&\xrightarrow{5x^2+19x+15}&g(5x+6),\\
Line 9: Line 33:
g(3x+2)&\xrightarrow{6x+12}&0^\infty\;1\;\textrm{Z>}\;01\;001^{x+1}\;1\;0^\infty.\\\hline
g(3x+2)&\xrightarrow{6x+12}&0^\infty\;1\;\textrm{Z>}\;01\;001^{x+1}\;1\;0^\infty.\\\hline
\end{array}</math>
\end{array}</math>
===Proof===
<div class="toccolours mw-collapsible mw-collapsed">'''Proof'''<div class="mw-collapsible-content">
Consider the configuration <math>C(m,n):=0^\infty\;\textrm{<A}\;1^m\;001^n\;1\;0^\infty</math>. After one step this configuration becomes <math>0^\infty\;1\;\textrm{B>}\;1^m\;001^n\;1\;0^\infty</math>. We note the following shift rule:
Consider the configuration <math>C(m,n):=0^\infty\;\textrm{<A}\;1^m\;001^n\;1\;0^\infty</math>. After one step this configuration becomes <math>0^\infty\;1\;\textrm{B>}\;1^m\;001^n\;1\;0^\infty</math>. We note the following shift rule:
<math display="block">\begin{array}{|c|}\hline\textrm{B>}\;1^a\xrightarrow{a}1^a\;\textrm{B>}\\\hline\end{array}</math>
<math display="block">\begin{array}{|c|}\hline\textrm{B>}\;1^a\xrightarrow{a}1^a\;\textrm{B>}\\\hline\end{array}</math>
Line 25: Line 49:


The information above can be summarized as<ref>Aaronson, S. (2020). The Busy Beaver Frontier. Page 10-11. https://www.scottaaronson.com/papers/bb.pdf</ref>
The information above can be summarized as<ref>Aaronson, S. (2020). The Busy Beaver Frontier. Page 10-11. https://www.scottaaronson.com/papers/bb.pdf</ref>
<math display="block">g(x)\rightarrow\begin{cases}g\Big(\frac{5}{3}x+6\Big)&\text{if }x\equiv0\pmod{3}\\g\Big(\frac{5x+22}{3}\Big)&\text{if }x\equiv1\pmod{3}\\0^\infty\;1\;\textrm{Z>}\;01\;001^{(x+1)/3}\;1\;0^\infty&\text{if }x\equiv2\pmod{3}\end{cases}</math>
<math display="block">g(x)\rightarrow\begin{cases}g\Big(\frac{5}{3}x+6\Big)&\text{if }x\equiv0\pmod{3},\\g\Big(\frac{5x+22}{3}\Big)&\text{if }x\equiv1\pmod{3},\\0^\infty\;1\;\textrm{Z>}\;01\;001^{(x+1)/3}\;1\;0^\infty&\text{if }x\equiv2\pmod{3}.\end{cases}</math>
Substituting <math>x\leftarrow 3x</math>, <math>x\leftarrow 3x+1</math>, and <math>x\leftarrow 3x+2</math> to each of these cases respectively gives us our final result.
Substituting <math>x\leftarrow 3x</math>, <math>x\leftarrow 3x+1</math>, and <math>x\leftarrow 3x+2</math> to each of these cases respectively gives us our final result.
</div></div>
In effect, the halting problem for the 5-state busy beaver winner is about whether repeatedly applying the function <math display="inline">f(n)=3n+6-4\Big\lfloor\frac{n}{3}\Big\rfloor</math> eventually produces a value of <math>n</math> that is congruent to 2 modulo 3.
== Trajectory ==
== Trajectory ==
[[File:BB5Champ 0-365.gif|right|thumb|An animation of <math>g(0)</math> becoming <math>g(34)</math> in 365 steps (''click to view'').]]
The initial blank tape represents <math>g(0)</math>, and the [[Collatz-like]] rules are iterated 15 times before halting:
The initial blank tape represents <math>g(0)</math>, and the [[Collatz-like]] rules are iterated 15 times before halting:
<math display="block">\begin{array}{|lllllllllll|}\hline g(0)&\xrightarrow{15} &g(6)&\xrightarrow{73} &g(16)&\xrightarrow{277}\\
<math display="block">\begin{array}{|l|}\hline\begin{array}{lllllllllllllll}
g(34)&\xrightarrow{907}&g(64)&\xrightarrow{2757}&g(114)&\xrightarrow{7957}\\
g(0)&\xrightarrow{15}&g(6)&\xrightarrow{73} &g(16)&\xrightarrow{277}&g(34)&\xrightarrow{907}&g(64)&\xrightarrow{2757}\\
g(196)&\xrightarrow{22777}&g(334)&\xrightarrow{64407}&g(564)&\xrightarrow{180307}\\
g(114)&\xrightarrow{7957}&g(196)&\xrightarrow{22777}&g(334)&\xrightarrow{64407}&g(564)&\xrightarrow{180307}&g(946)&\xrightarrow{504027}\\
g(946)&\xrightarrow{504027}&g(1584)&\xrightarrow{1403967}&g(2646)&\xrightarrow{3906393}\\
g(1584)&\xrightarrow{1403967}&g(2646)&\xrightarrow{3906393}&g(4416)&\xrightarrow{10861903}&g(7366)&\xrightarrow{30196527}&g(12284)&\xrightarrow{24576}\end{array}\\0^\infty\;1\;\textrm{Z>}\;01\;001^{4095}\;1\;0^\infty\\\hline\end{array}</math>
g(4416)&\xrightarrow{10861903}&g(7366)&\xrightarrow{30196527}&g(12284)&\xrightarrow{24576} &0^\infty\;1\;\textrm{Z>}\;01\;001^{4095}\;1\;0^\infty\\\hline\end{array}</math>
== References ==
== References ==
<references/>

Latest revision as of 11:00, 14 April 2025

The 5-state busy beaver winner is the Turing machine whose step count determines BB(5). Up to permutations, that machine is 1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA (bbch), which halts after 47176870 steps with 4098 ones on the tape. It was first reported on by Heiner Marxen and Jürgen Buntrock in February 1990,[1] and the high-level rules were first demonstrated by Michael Buro in November 1990.[2]

0 1
A 1RB 1LC
B 1RC 1RB
C 1RD 0LE
D 1LA 1LD
E 1RZ 0LA
The transition table of the 5-state busy beaver winner.

Analysis

Let . Then,[3]

Proof

Consider the configuration . After one step this configuration becomes . We note the following shift rule:

Using this shift rule, we get after steps. If , then we get four steps later. Another shift rule is needed here:
In this instance, is substituted for , which creates three different scenarios depending on the value of modulo 3. They are as follows:

  1. If , then in steps we arrive at , which is the same configuration as .
  2. If , then in steps we arrive at , which in five steps becomes , equal to .
  3. If , then in steps we arrive at , which in three steps halts with the configuration , for a total of steps from .

Returning to , if , then in three steps it changes into . Here we can make use of one more shift rule:

Doing so takes us to in steps, which after one step becomes the configuration , equal to . To summarize:
We have . As a result, if , we then get and the above rule is applied until we reach , equal to , in steps for a total of steps from (with we see the impossible configuration , but it reaches in 15 steps regardless). However, if , we then get which reaches , equal to , in steps ( steps total).

The information above can be summarized as[4]

Substituting , , and to each of these cases respectively gives us our final result.

In effect, the halting problem for the 5-state busy beaver winner is about whether repeatedly applying the function eventually produces a value of that is congruent to 2 modulo 3.

Trajectory

The initial blank tape represents , and the Collatz-like rules are iterated 15 times before halting:

References

  1. H. Marxen and J. Buntrock. Attacking the Busy Beaver 5. Bulletin of the EATCS, 40, pages 247-251, February 1990. https://turbotm.de/~heiner/BB/mabu90.html
  2. Buro, Michael (November 1990). "Ein Beitrag zur Bestimmung von Rados - oder - Wie fängt man fleißige Biber?" [A contribution to the determination of Rado's - or - How to catch busy beavers?]. Schriften zur Informatik und angewandten Mathematik (Report No. 146). Rheinisch-Westfälische Technische Hochschule Aachen. https://skatgame.net/mburo/ps/diploma.pdf
  3. Pascal Michel. Behavior of busy beavers. https://bbchallenge.org/~pascal.michel/beh#tm52a
  4. Aaronson, S. (2020). The Busy Beaver Frontier. Page 10-11. https://www.scottaaronson.com/papers/bb.pdf