5-state busy beaver winner: Difference between revisions
No edit summary |
mNo edit summary |
||
(13 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
{{machine|1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA}} | {{machine|1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA}} | ||
The 5-state busy beaver | The '''5-state busy beaver winner''' is the [[Turing machine]] whose step count determines [[BB(5)]]. Up to permutations, that machine is {{TM|1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA|halt}}, which halts after 47176870 steps with 4098 ones on the tape. It was first reported on by Heiner Marxen and Jürgen Buntrock in February 1990,<ref>H. Marxen and J. Buntrock. Attacking the Busy Beaver 5. Bulletin of the EATCS, 40, pages 247-251, February 1990. https://turbotm.de/~heiner/BB/mabu90.html</ref> and the high-level rules were first demonstrated by Michael Buro in November 1990.<ref>Buro, Michael (November 1990). "Ein Beitrag zur Bestimmung von Rados <math>\Sigma(5)</math> - oder - Wie fängt man fleißige Biber?" [A contribution to the determination of Rado's <math>\Sigma(5)</math> - or - How to catch busy beavers?]. ''Schriften zur Informatik und angewandten Mathematik'' (Report No. 146). Rheinisch-Westfälische Technische Hochschule Aachen. https://skatgame.net/mburo/ps/diploma.pdf</ref> | ||
<div style="width: fit-content; text-align: center; margin-left: auto; margin-right: auto;"> | |||
{|class="wikitable" style="margin-left: auto; margin-right: auto;" | |||
! !!0!!1 | |||
|- | |||
!A | |||
|1RB | |||
|1LC | |||
|- | |||
!B | |||
|1RC | |||
|1RB | |||
|- | |||
!C | |||
|1RD | |||
|0LE | |||
|- | |||
!D | |||
|1LA | |||
|1LD | |||
|- | |||
!E | |||
|1RZ | |||
|0LA | |||
|} | |||
The transition table of the 5-state busy beaver winner.</div> | |||
== Analysis == | == Analysis == | ||
Let <math>g(x):=0^\infty\;\textrm{<A}\,1^x\;0^\infty</math>. Then,<ref>Pascal Michel. Behavior of busy beavers. https://bbchallenge.org/~pascal.michel/beh#tm52a</ref> | |||
Let <math>g(x):=0^\infty\;\textrm{<A}\,1^x\;0^\infty</math>. Then<ref>Pascal Michel. Behavior of busy beavers.https://bbchallenge.org/~pascal.michel/beh#tm52a</ref> | |||
<math display="block">\begin{array}{|lll|}\hline | <math display="block">\begin{array}{|lll|}\hline | ||
g(3x)&\xrightarrow{5x^2+19x+15}&g(5x+6),\\ | g(3x)&\xrightarrow{5x^2+19x+15}&g(5x+6),\\ | ||
Line 9: | Line 33: | ||
g(3x+2)&\xrightarrow{6x+12}&0^\infty\;1\;\textrm{Z>}\;01\;001^{x+1}\;1\;0^\infty.\\\hline | g(3x+2)&\xrightarrow{6x+12}&0^\infty\;1\;\textrm{Z>}\;01\;001^{x+1}\;1\;0^\infty.\\\hline | ||
\end{array}</math> | \end{array}</math> | ||
= | <div class="toccolours mw-collapsible mw-collapsed">'''Proof'''<div class="mw-collapsible-content"> | ||
Consider the configuration <math>C(m,n):=0^\infty\;\textrm{<A}\;1^m\;001^n\;1\;0^\infty</math>. After one step this configuration becomes <math>0^\infty\;1\;\textrm{B>}\;1^m\;001^n\;1\;0^\infty</math>. We note the following shift rule: | Consider the configuration <math>C(m,n):=0^\infty\;\textrm{<A}\;1^m\;001^n\;1\;0^\infty</math>. After one step this configuration becomes <math>0^\infty\;1\;\textrm{B>}\;1^m\;001^n\;1\;0^\infty</math>. We note the following shift rule: | ||
<math display="block">\begin{array}{|c|}\hline\textrm{B>}\;1^a\xrightarrow{a}1^a\;\textrm{B>}\\\hline\end{array}</math> | <math display="block">\begin{array}{|c|}\hline\textrm{B>}\;1^a\xrightarrow{a}1^a\;\textrm{B>}\\\hline\end{array}</math> | ||
Line 25: | Line 49: | ||
The information above can be summarized as<ref>Aaronson, S. (2020). The Busy Beaver Frontier. Page 10-11. https://www.scottaaronson.com/papers/bb.pdf</ref> | The information above can be summarized as<ref>Aaronson, S. (2020). The Busy Beaver Frontier. Page 10-11. https://www.scottaaronson.com/papers/bb.pdf</ref> | ||
<math display="block">g(x)\rightarrow\begin{cases}g\Big(\frac{5}{3}x+6\Big)&\text{if }x\equiv0\pmod{3}\\g\Big(\frac{5x+22}{3}\Big)&\text{if }x\equiv1\pmod{3}\\0^\infty\;1\;\textrm{Z>}\;01\;001^{(x+1)/3}\;1\;0^\infty&\text{if }x\equiv2\pmod{3}\end{cases}</math> | <math display="block">g(x)\rightarrow\begin{cases}g\Big(\frac{5}{3}x+6\Big)&\text{if }x\equiv0\pmod{3},\\g\Big(\frac{5x+22}{3}\Big)&\text{if }x\equiv1\pmod{3},\\0^\infty\;1\;\textrm{Z>}\;01\;001^{(x+1)/3}\;1\;0^\infty&\text{if }x\equiv2\pmod{3}.\end{cases}</math> | ||
Substituting <math>x\leftarrow 3x</math>, <math>x\leftarrow 3x+1</math>, and <math>x\leftarrow 3x+2</math> to each of these cases respectively gives us our final result. | Substituting <math>x\leftarrow 3x</math>, <math>x\leftarrow 3x+1</math>, and <math>x\leftarrow 3x+2</math> to each of these cases respectively gives us our final result. | ||
</div></div> | |||
In effect, the halting problem for the 5-state busy beaver winner is about whether repeatedly applying the function <math display="inline">f(n)=3n+6-4\Big\lfloor\frac{n}{3}\Big\rfloor</math> eventually produces a value of <math>n</math> that is congruent to 2 modulo 3. | |||
== Trajectory == | == Trajectory == | ||
The initial blank tape represents <math>g(0)</math>, and the [[Collatz-like]] rules are iterated 15 times before halting: | The initial blank tape represents <math>g(0)</math>, and the [[Collatz-like]] rules are iterated 15 times before halting: | ||
<math display="block">\begin{array}{| | <math display="block">\begin{array}{|l|}\hline\begin{array}{lllllllllllllll} | ||
g(34)&\xrightarrow{907}&g(64)&\xrightarrow{2757} | g(0)&\xrightarrow{15}&g(6)&\xrightarrow{73} &g(16)&\xrightarrow{277}&g(34)&\xrightarrow{907}&g(64)&\xrightarrow{2757}\\ | ||
g(196)&\xrightarrow{22777}&g(334)&\xrightarrow{64407}&g(564)&\xrightarrow{180307} | g(114)&\xrightarrow{7957}&g(196)&\xrightarrow{22777}&g(334)&\xrightarrow{64407}&g(564)&\xrightarrow{180307}&g(946)&\xrightarrow{504027}\\ | ||
g(946)&\xrightarrow{504027} | g(1584)&\xrightarrow{1403967}&g(2646)&\xrightarrow{3906393}&g(4416)&\xrightarrow{10861903}&g(7366)&\xrightarrow{30196527}&g(12284)&\xrightarrow{24576}\end{array}\\0^\infty\;1\;\textrm{Z>}\;01\;001^{4095}\;1\;0^\infty\\\hline\end{array}</math> | ||
g(4416)&\xrightarrow{10861903}&g(7366)&\xrightarrow{30196527}&g(12284)&\xrightarrow{24576} | |||
== References == | == References == | ||
<references/> |
Latest revision as of 11:00, 14 April 2025
The 5-state busy beaver winner is the Turing machine whose step count determines BB(5). Up to permutations, that machine is 1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA
(bbch), which halts after 47176870 steps with 4098 ones on the tape. It was first reported on by Heiner Marxen and Jürgen Buntrock in February 1990,[1] and the high-level rules were first demonstrated by Michael Buro in November 1990.[2]
0 | 1 | |
---|---|---|
A | 1RB | 1LC |
B | 1RC | 1RB |
C | 1RD | 0LE |
D | 1LA | 1LD |
E | 1RZ | 0LA |
Analysis
Let . Then,[3]
Consider the configuration . After one step this configuration becomes . We note the following shift rule:
- If , then in steps we arrive at , which is the same configuration as .
- If , then in steps we arrive at , which in five steps becomes , equal to .
- If , then in steps we arrive at , which in three steps halts with the configuration , for a total of steps from .
Returning to , if , then in three steps it changes into . Here we can make use of one more shift rule:
The information above can be summarized as[4]
In effect, the halting problem for the 5-state busy beaver winner is about whether repeatedly applying the function eventually produces a value of that is congruent to 2 modulo 3.
Trajectory
The initial blank tape represents , and the Collatz-like rules are iterated 15 times before halting:
References
- ↑ H. Marxen and J. Buntrock. Attacking the Busy Beaver 5. Bulletin of the EATCS, 40, pages 247-251, February 1990. https://turbotm.de/~heiner/BB/mabu90.html
- ↑ Buro, Michael (November 1990). "Ein Beitrag zur Bestimmung von Rados - oder - Wie fängt man fleißige Biber?" [A contribution to the determination of Rado's - or - How to catch busy beavers?]. Schriften zur Informatik und angewandten Mathematik (Report No. 146). Rheinisch-Westfälische Technische Hochschule Aachen. https://skatgame.net/mburo/ps/diploma.pdf
- ↑ Pascal Michel. Behavior of busy beavers. https://bbchallenge.org/~pascal.michel/beh#tm52a
- ↑ Aaronson, S. (2020). The Busy Beaver Frontier. Page 10-11. https://www.scottaaronson.com/papers/bb.pdf