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1 Introduction

We will be looking at the TM 1RB3RBILB—2RB 2LA1TRA4LB2LA2RA, a 2-
state 5-symbol TM whose behavior is similar to that of Skelet 17. Another 2-
state 5-symbol TM, IRB3RA2LBILBIRB 2LA2RA4ALATLA - also has similar
behavior. We will not be going over that TM, but it is claimed that there is an
isomorphism between that TM and the TM we will discuss.

2 Figuring out the rules

This is currently a placeholder. It is assumed that the rules mentioned in the
next section are accurate.

Define such a list of numbers as S. Let S; be the i-th index of S starting
with index 0.

3 Proofthat IRB3RB1LB—2RB 2LA1RA4LB2LA2RA
doesn’t halt

From the previous section (currently assumed), we have the following sequence
of list of numbers:

1. Start with [1,1]

2. Given a list of numbers S, define the next term of the sequence P(S) as
follows (assume S has at least two elements)

e Halve: If the first term is 0, delete it and increment the new first
term by 3 (Example: [0, 18, 9, 4, 1] becomes [21, 9, 4, 1])

e Even Increment: If the first term is a positive even number, decre-
ment the first term by 1 and increment the second term by 1 (Exam-
ple, [40, 20, 11, 5, 1] becomes [39, 21, 11, 5, 1])

e Halt: If the first term is an odd number, all other terms are even
numbers, and the last term is 0, then Halt.
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e Empty: If the first term is an odd number, all other terms are even
numbers, and the last term is non-zero, then decrement the first
number and append a 0 to the end of the list (Example: [9, 6, 4, 2]
becomes [8, 6, 4, 2, 0])

e Overflow: If the first and last term are odd numbers, and all other
terms are even numbers, then decrement the first number and append
a 1 to the end of the list (Example: [1, 10, 4, 1] becomes [0, 10, 4, 1,

1))

e Odd Increment: Otherwise (the first term is odd and there is another
term before the last term that is also odd), consider the leftmost odd
number that is not the first term. Increment the number immediately
to its right by 1, and decrement the first term by 1. (Examples: [5,
8, 3, 2, 0] becomes [4, 8, 3, 3, 0]; [7, 9, 4, 2, 0] becomes [6, 9, 5, 2, 0];
[3, 14, 6, 3, 0] becomes [2, 14, 6, 3, 1])

Definitions:

Consider two lists of numbers S and T. We say T is a normal successor of
S if you can get T by incrementing one of the elements in S by 2, and we say
T is an overflow successor of S if you can get T by appending 0 to the ends of
S then incrementing one of the elements in S by 2.

We define a list of numbers S to be secure if one of two things is true:

1. Type 1: There exists a normal successor of S that can be reached by
repeatedly applying P(S) to it. And there’s exactly 1 Halve rule, 1 Empty
rule, and 0 Overflow/Halt rules applied in the process.

2. Type 2: There exists an overflow successor of S that can be reached by
repeatedly applying P(S) to it, the successor’s last element is non-zero,
and while applying P(S), you encounter exactly 1 Empty rule, 1 Overflow
rule, and 1 Halve rule in that order, with no other instances of these rules
or halting rules.

3. Type 3: There exists an overflow successor of S that can be reached by
repeatedly applying P(S) to it, and while applying P(S), you encounter
exactly 1 Overflow rule, 1 Halve rule, and one Empty rule in that order,
with no other instances of these rules or halting rules.

Theorem 1: If S is Type 1 secure, then P(S) is secure (any type).

Proof: Let T be the normal successor of S from the definition of Type 1
secure.
We have different cases on S

o If the transition from S to P(S) is an Even Increment rule, that would
make T to P(T) also an Even Increment rule. It follows that P(T) is



a normal successor of P(S), additionally, the number of Empty, Zero,
Overflow, and Halt rules are the same, so P(S) is Type 1 secure.

o If the transition from S to P(S) is an Odd Increment rule, that would also
make T to P(T) an odd increment rule. Since the index of the leftmost
odd term is the same between S and T, it follows that P(T) is a normal
successor of P(S). Similar to before, the number of each rule type doesn’t
change, so P(S) is Type 1 secure.

o If the transition from S to P(S) is an Empty rule, then so is the transition
from T to P(T). Since S and T are the same length, appending a 0 to
the end is the same for both sides. It follows that P(T) is also a normal
successor of P(S). The empty rule is removed from S to P(.S), but added
back from T to P(T") so P(S) is Type 1 secure.

o If the transition from S to P(S) is a Halve rule, then from the lemma, we
know that T is a normal successor of S. There are three cases:

1. If T to P(T) is also a halve rule, then P(T) is a normal successor of
P(S). This means P(S) is Type 1 secure.

2. Otherwise, the first element of T is 2. (I got lazy, but basically, T
starts with 2, so if T does an even then odd increment, halve, then do
another increment, it will end up being a normal successor of P(.S),
making P(S) Type 1 secure)

3. (Also got lazy here, but if T does an even increment, overflow, halve,
then another increment, you get an overflow successor, making P(S)
type 2 secure)

Since in every case, we can find another successor for P(S), we have com-
pleted the proof.

Theorem 2: If S is Type 2 secure, then P(S) is secure (any type).

Proof: Let T be the overflow successor of S from the definition of Type 2
secure.
We have different cases on S

e If the transition from S to P(S) is an Even Increment rule, that would
make T to P(T) also an Even Increment rule. It follows that P(T) is an
overflow successor of P(S), so P(S) is Type 2 secure.

o If the transition from S to P(S) is an Odd Increment rule, that would also
make T to P(T) an Odd Increment rule. Since the index of the leftmost
odd term is the same between S and T, it follows that P(T) is an overflow
successor of P(S). So P(S) is Type 2 secure.



e If the transition from S to P(S) is an Empty rule, then so is the transition
from T to P(T). (It’s important to note that the last element of T is
non-zero). It follows that P(T) is also an overflow successor of P(S5).
However, since the Empty rule is now after the Overflow and Halve rule,
P(S) becomes Type 3 secure.

Since in every case, we can find another successor for P(S), we have com-
pleted the proof.

Theorem 3: If S is Type 3 secure, then P(S) is secure (any type).

Proof: Let T be the overflow successor of S from the definition of Type 3
secure.
We have different cases on S

e If the transition from S to P(S) is an Even Increment rule, that would
make T to P(T) also an Even Increment rule. It follows that P(T) is an
overflow successor of P(S), so P(S) is Type 3 secure.

o If the transition from S to P(S) is an Odd Increment rule, that would also
make 7' to P(T') an Odd Increment rule. Since the index of the leftmost
odd term is the same between S and T, it follows that P(T) is an overflow
successor of P(S). So P(S) is Type 3 secure.

o If the transition from S to P(S) is an overflow rule, then we know that T is
an overflow successor of S. It follows that T to P(T) is an Odd Increment
rule. It follows that P(T) is a successor of P(S). And that P(S) is Type
1 secure.

Since in every case, we can find another successor for P(S), we have com-
pleted the proof.

This means if S is secure, then P(S) is secure. Since [1,1] is secure, every
term after that is secure, and also can’t halt, so this sequence never halts.
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